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ASTR 425/525 Cosmology Homework 1

Problem 1

a) If the typical total mass of a galaxy is about 102 M), what is the average matter density of

the Universe today, in Mg/ Mpc?, assuming that all matter in the Universe resides within
galaxies.

b) How does that compare with the current density of the Universe, p, ~ 1.4 x 10'* My /Mpc*?

a) We need to compute something of the form

(Average) matter density of the universe = Typial mass - Galaxy number density (1.1)

We are given that the typical (total) mass of a galaxy is about 10 My,. We still need to
compute a galaxy number densityf] first.

Recall that (see the Distances and the metric lecture notes) the typical distance between
large galaxies in our Universe is ~ 1 Mpc. It is then plausible to think that in a sphere with
radius of half this distance contains, roughly, one galaxy. This gives a number density of

1
Ngalaxy = 77
g y V

1

g7 (1.2)

3
=——— Mpc™®
(058 ¢

= 1.90986 Mpc 3
We can now compute that the average matter density is

p = (typical mass) - Ngalaxy

M
=191 x 102 =2
Mpc

3

b) The computed value is 13.64 times larger than the current density of the universe. This difference
can be attributed to the assumptions that we made. Furthermore, one can consider computing
Ngalaxy 11 slightly different ways.

'Tf we have a given volume in space, how many galaxies can we expect to find inside?
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Problem 2

Our current universe appears to be dominated by a cosmological constant. Compute the age of
our universe assuming that today (when the Hubble expansion rate is Hy = 70km/s/Mpc) 70%
of the energy is in the form of the cosmological constant and 30% is in the form of cold matter.

We are given the fractional densities of the species today, that is:

Qp = 0.7 (2.3)
Qeam = 0.3

both of which are related to the Hubble rate through the Friedmann equation (see Eqs. 2.141, 2.144

in Baumann)
H(a) = Hov/ Qeama™ + Qp (2.5)

By recalling the definition of the Hubble rate, H = a/a = %‘;—Ut‘, we can rewrite Eq. as an explicit
differential equation for a(t):

1da
H=—-—— = Hy\/Qcama™3 + 2.6
a dt 0 dm@ o 524 (2:6)
And we can rearrange to isolate the variables a,t on their respective sides of the equality:
1
dt = da (2.7)

aHO chma—?’ —+ QA

The age of the universe can then be computed by integrating Eq. 2.7

1
1
- / da (2.8)
0 OJHO \% chma_3 + QA

Where the t integral goes from 0 to ¢. This integral can be solved analytically (see the hint on
worksheet # 7). Still, it is good to know how to evaluate integrals numerically, and this is a good
simple example to learn from. Find below python code that evaluates and prints the resulting value
of this integral.

1 import numpy as np
2 import scipy.integrate as integrate
3

4 # Set universe parameters

5 Omega_Lambda = 0.7

6 Omega_cdm = 0.3

7 HO = 70 # km/sec/Mpc

o # Define the function we want to integrate
10 def integrad(a):
11 return 1/(a*xHO*np.sqrt(Omega_Lambda+0Omega_cdm*a*x*(-3)))

13 # Integrate

14 # Observe that the integrate.quad() function has 3 parameters here:
15 # The integrand and the lower/upper limits of integration.

16 age_of_the_universe, error = integrate.quad(integrad, 0, 1)

17 print (age_of_the_universe, "(km/s/Mpc)~-1")
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Returning

M
age of the universe = 1.37728 x 1072 sk—pC (2.9)
m

Observing that there are 3.086 x 10! km in a Mpc, and that there are 31556952 seconds in a year,
we see that
Mpc  3.086 x 10 km 1yr

f the uni = 1.37728 x 1072 :
age of the universe X - TMpe 31EE6050 o
— 1.34686 x 101 yr (2.10)
= 13.468 Gyr (billions of)
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Cosmic age as a function of scale factor.
The analytic solution to the integral is:
1
d 2 Q
/ a = arcsin A (2.11)
0 CLH\/ chma—3 + QA 3H\/ QA chm



ASTR 425/525 Cosmology Homework 1

Problem 3

a) As you saw in the previous problem, the age of the Universe is tightly related to the Hubble
constant Hy. However, in the far future, once the cosmological constant completely dom-
inates the energy density of our universe, this relationship will break down. Show that a
far-future civilization will determine the age of the Universe to be infinite, independent of
H().

b) What does this tell you about the symmetry structure of this Universe? Does it have more
symmetry as compared to a standard FLRW universe dominated by nonrelativistic matter?

a)

Consider the far future when the cosmological constant energy density completely dominates.
By neglecting any other component (Qedm, O, 2, Q. — 0, making Q4 = 1 by definition), we
observe that the Hubble rate becomes constant:

H(a) = Hy\/Q + negligible components

— Hos"1 (3.12)
= H,

Following the same process as in problem 2, we can conclude that the age of the universe will
be given by:

Hy Jy a
=i (log(l) — log(0)> (3.13)

The universe acquires a temporal symmetry, making it (in the limit of a far future, i.e., asymp-
totically) time-translation invariant (analogous to isotropy/homogeneity for spatial symmetries).

We won’t be able to distinguish different times, because the universe will look the same whether
we look at it now or later in time (the energy composition remains fixed and the Hubble rate
becomes constant).

This kind of scenario is interesting for many reasons, such as (but not limited to):

e The expansion of the universe (a(t)) is a constant-rate exponential that won’t slow down.
e The horizon size is constant (here we mean the physical/proper distance) at all times.

e Observers born into this universe won’t be able to tell much about their cosmological past.
Any kind of useful information red-shifted /moved outside their horizon.

These kinds of universes are examples of de Sitter spaces. There are some interesting
properties about these spaces, such as a non-zero vacuum temperature.
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Problem 4

Let’s consider the flat FLRW metric:

ds® = —dt* + a*(t) [dr® + r*(d6” + sin®(0)d¢?)]

where a(t) is the scale factor. For this problem, assume a realistic universe filled with matter,
radiation, and a cosmological constant, and use the following values of the cosmological parame-
ters:

Hy =70.4 km/s/Mpc

Q, = 0.000084
Q,, = 0.272
Op = 0.728 .

Here, we shall refer to epochs in the evolution of the Universe in terms of their redshift z, which

is related to the scale factor by
1

1+ 2

a(t) =

a) Using the fact that photons always travel on null trajectories (ds* = 0), compute the total
comoving distance that a photon will travel from the Big Bang at ¢ = 0 to the epoch of
recombination at redshift z = 1090.

b) Now compute the total comoving distance that a photon will travel from the epoch of
recombination to the present time (z = 0).

¢) Divide your answer from part (a) by that from part (b). Using a diagram, show that this
ratio is the maximum angle separating photons that were in causal contact in the distant
past, according to the metric above. Express this angle in degrees. Now, we observe
that cosmic microwave background (CMB) photons (which were emitted at the epoch of
recombination at z = 1090) from opposite points in the sky (i.e., points separated by 180
degrees) to have the same temperature to a high accuracy. Do you see a problem here?
Explain.

a) We want to find the comoving distance (i.e. distance on the expanding-grid of the universe)
for a photon traveling ever since the big bang up until redshift z = 1090 (corresponding to the
epoch of recombination). Because of the null trajectory (ds? = 0), we see that

dt* = a*(t)dr® (4.14)

trec
Tcom = /dT’_/ (415)
t

Observe that we not only don’t know (yet) what the 1ntegrand is (how does a depend on t),
but we also don’t know the equivalent cosmic time ¢ corresponding to z,. = 1090. The easiest
way to approach this is to rewrite the ¢ integral as an integral in terms of a (or equivalently, z).
Recall that we can rewrite the Friedmann equation as (see Eq. 2.144 in Baumann)

H(a) = Ho/Qa™ + Qa3 + Qa2 + Qy (4.16)

So the comoving distance is:
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Since H = a/a = %1 it follows that:

So Eq. can be written as

trec dt
Tcom = / -
0 a

/arec da

= 2—

o a*H

(setting ) = 0) = da

/0 a?Hov/Qra= + Qa3 + Qy

(4.17)

(4.18)

This integral can’t be solved analytically, so we must resort to numerical methods. Because
of its relatively short integration interval, this integral is not inherently numerically-unstable.
Nonetheless, it is good practice to compute these integrals over redshift z rather than scale factor
a. Not only will the integrand be simpler, but it will make the integral numerically-tractable

for longer integration intervals such as the one in part (b).

Why changing to z is important in most cases.

Scale factor a [part a]

Scale factor a [part b]
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One should generally plot integrands like the one on the right using a logarithmically spaced
horizontal axis. Here, a linear axis was used deliberately to illustrate potential numerical
instabilities. Observe that, over the integration domain for part (b), the integrand varies
rapidly at small a, to then become relatively stable at larger a. Most conventional numerical
integration codes/routines may struggle to find a reliable value if such the integrand is not
handled carefully and without human-set precision parameters.

Recalling that

We observe that

(4.19)

(4.20)
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And the integral in Eq. becomes

Tcom = dz (421)
Zrec HO\/QI‘(l + Z>4 _|— Qm(l + Z)3 + QA

Where the negative sign was absorbed while flipping the limits of integration. Find code below:

import numpy as np
import scipy.integrate as integrate

# Set universe parameters
HO = 70.4 # km/s/Mpc
Omega_r = 0.000084
Omega_m 0.272

Omega_L 0.728

# Define the function we want to integrate
def integrad(z):
return 1/(HO*np.sqrt(
+ Omega_r*(1+z) **4
+ Omega_m*(1+z) *%*3
+ Omega_L)
)

z_rec = 1090
z_big_bang = np.inf

c = 2.997e8 # m/s. To conver from (km/s/Mpc) -1 to Mpc

# Integrate

r_com, error = integrate.quad(integrad, z_rec, z_big_bang)
print (f"{r_com:.4e} (km/s/Mpc)~-1")

5 print (£"{r_com*c/1000:.4e} Mpc") # The factor of 1/1000 converts km to m

From which we find that
Feom = 2.8459 x 10° Mpc (4.22)

We can recycle the equation/code from part (a). We just need to modify the integration limits.
The initial time is z,. = 1090 and the final time is zioqay = 0 (minding the order in which we
place these limits of integration)

r_com, error = integrate.quad(integrad, 0, z_rec)

print (£"{r_com:.4e} (km/s/Mpc) ~-1")
print (£"{r_com*c/1000:.4e} Mpc") # The factor of 1/1000 converts km to m

We find

Teom = 1.4072 x 10* Mpc

4.23
= 14.072 Gpc ( )

Fun fact: If we print the variable error returned by integrate.quad(), we can observe that
the integration error computed using the integrand expressed in scale factor is roughly 2.55
times larger than the error computed using the redshift version of the integrand.
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c¢) What we realize here is that the comoving distance a photon travels between the big bang
and the time of recombination is much (very much) smaller than the comoving distance that a
photon travels between the time of recombination and today.

Flow of time

- _/_ _________________ Big Bang

Our past light cone (in red) sets the boundaries of what we can see. This light cone is quite
large, but notice that can observe light whose past light cones never intersect, hence they never
have causal contact. There is a maximum angle (spanning the black triangle) at which we can
observe photons from the CMB whose light cones intersect (here in blue and green). This angle
comes out to be
. 284.59
~ 14072
= 2.02238 x 10~? Radians

= 1.158°

Radians

(4.24)

If we are observing that opposite points in the sky have the same temperature, then there is
something interesting going on. Why do they have the same temperature if these points were
never in causal contact? This is known as the horizon problem.

Flow of time

— A ____________ A_ Big Bang

The problem is not that we can see light coming from the boundary of our past light cone, but
rather that their own light cones don’t intersect even though our observations seem to suggest

they do. [ |
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Problem 5

Imagine a spatially-flat homogeneous and isotropic expanding universe filled exclusively with a
fluid with an equation of state w = 1 such that p = p. Let’s denote the present-day Hubble
expansion rate as Hy in this universe.

a) Using conservation of energy in an expanding universe, show that the energy density of this
fluid scales with the scale factor of the Universe a(t) as

p o< a(t)®.

b) Compute the present age of this universe ty, as a function of Hy. Is this universe older or
younger than a spatially-flat universe entirely filled with non-relativistic matter (w = 0)
with the same Hubble constant today?

¢) Now imagine that after greatly improving their cosmological measurements, the inhabitants
of this universe discover that their universe is in fact not spatially flat but has instead a
small spatial curvature given by
Qr =-0.01.

Argue that this implies that their universe will eventually stop expanding and start to
contract. Assuming the usual normalization of the scale factor such that a(ty) = 1, compute
the value of the scale factor at which this turn-around point occurs.

d) Compute the total age tgc that this universe have at the time of its “big crunch” when the
entire universe has collapsed back to a point (i.e., a(tgc) = 0).

a) Let’s formally solve the continuity equation (Eq. 7, in the Continuity equation lecture notes):

dp dap+p
dt+3dt a =0
dp% dd 2p
— — =0
da t+ t a

dp _ 0o

(5.25)

Inp=—6lna+C
Inp=Ina®+C

poca_6

Where the proportionality is taken to drop the constant term. Observe that this proportionality
becomes an equality by introducing an initial condition, namely:

pla) = poa™® (5.26)
b) Recall that
a dal
a dta (5:27)
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So
B da

T aH
Where, in this universe filled exclusively with a w = 1 fluid,

H(a) = Ho/Qaqa7" (5.29)

= H()CL73

t
tage = / dt
0

B /1 da
N a=0 aHOa_3

1 /1 2 (5.30)
0

dt (5.28)

The age of this universe follows as

-
11
T
=1/3 H;"

A universe filled with non-relativistic matter is twice as old:

t
tage = / dt
0

B /1 da
 Jaco aHoa—30+w)/2 (5.31)
1 !
setting w = 0... = —/ a'*da
° Ho Jo
=2/3 Hy*
c) If Qg = —0.01, then we must have
Qgq = 1.01 (5.32)
From the Friedmann equation we have
d
d_CtL = Hoa\/Qﬂda_G + Qa2 (533)

The “turn-around” happens when da/dt = 0. This condition is equivalent to

QK + Qﬂda_4 =0

1 o Qaq
a4 n —QK
.34
, 101 (5:34)
a” = —
0.01
a=3.17015

So when the universe expands to a size 3.17 times today’s size (with normalization ayoday = 1),
the rate of change of the scale factor drops to 0. This is the turning point.

11
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d) The time to reach the turning point is:

b 1 /ama" da
" Hy om0 av/Quaa S+ Qga? (5.35)
= 18.9564 H,"

The lifespan of the universe (the time it takes for it to grow from a = 0 to its largest expansion
amax and back) is then given by twice the time it takes to reach the maximum:

tpc = 37.9127 Hy' (5.36)

12
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