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ASTR 425/525 Cosmology Homework 1

Problem 1

a) If the typical total mass of a galaxy is about 1012 M⊙, what is the average matter density of
the Universe today, in M⊙/Mpc3, assuming that all matter in the Universe resides within
galaxies.

b) How does that compare with the current density of the Universe, ρc ≃ 1.4×1011 M⊙/Mpc3?

a) We need to compute something of the form

(Average) matter density of the universe = Typial mass ·Galaxy number density (1.1)

We are given that the typical (total) mass of a galaxy is about 1012 M⊙. We still need to
compute a galaxy number density1 first.

Recall that (see the Distances and the metric lecture notes) the typical distance between
large galaxies in our Universe is ∼ 1 Mpc. It is then plausible to think that in a sphere with
radius of half this distance contains, roughly, one galaxy. This gives a number density of

ngalaxy =
1

V

=
1

4
3
πr3

=
3

4π(0.5)3
Mpc−3

= 1.90986 Mpc−3

(1.2)

We can now compute that the average matter density is

ρ = (typical mass) · ngalaxy

= 1.91× 1012
M⊙

Mpc3

b) The computed value is 13.64 times larger than the current density of the universe. This difference
can be attributed to the assumptions that we made. Furthermore, one can consider computing
ngalaxy in slightly different ways.

■

1If we have a given volume in space, how many galaxies can we expect to find inside?
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ASTR 425/525 Cosmology Homework 1

Problem 2

Our current universe appears to be dominated by a cosmological constant. Compute the age of
our universe assuming that today (when the Hubble expansion rate is H0 = 70km/s/Mpc) 70%
of the energy is in the form of the cosmological constant and 30% is in the form of cold matter.

We are given the fractional densities of the species today, that is:

ΩΛ = 0.7 (2.3)

Ωcdm = 0.3 (2.4)

both of which are related to the Hubble rate through the Friedmann equation (see Eqs. 2.141, 2.144
in Baumann)

H(a) = H0

√
Ωcdma−3 + ΩΛ (2.5)

By recalling the definition of the Hubble rate, H ≡ ȧ/a = 1
a
da
dt
, we can rewrite Eq. 2.5 as an explicit

differential equation for a(t):

H =
1

a

da

dt
= H0

√
Ωcdma−3 + ΩΛ (2.6)

And we can rearrange to isolate the variables a, t on their respective sides of the equality:

dt =
1

aH0

√
Ωcdma−3 + ΩΛ

da (2.7)

The age of the universe can then be computed by integrating Eq. 2.7:

t =

� 1

0

1

aH0

√
Ωcdma−3 + ΩΛ

da (2.8)

Where the t integral goes from 0 to t. This integral can be solved analytically (see the hint on
worksheet # 7). Still, it is good to know how to evaluate integrals numerically, and this is a good
simple example to learn from. Find below python code that evaluates and prints the resulting value
of this integral.

1 import numpy as np

2 import scipy.integrate as integrate

3

4 # Set universe parameters

5 Omega_Lambda = 0.7

6 Omega_cdm = 0.3

7 H0 = 70 # km/sec/Mpc

8

9 # Define the function we want to integrate

10 def integrad(a):

11 return 1/(a*H0*np.sqrt(Omega_Lambda+Omega_cdm*a**( -3)))

12

13 # Integrate

14 # Observe that the integrate.quad() function has 3 parameters here:

15 # The integrand and the lower/upper limits of integration.

16 age_of_the_universe , error = integrate.quad(integrad , 0, 1)

17 print(age_of_the_universe , "(km/s/Mpc)^-1")
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Returning

age of the universe = 1.37728× 10−2 s
Mpc

km
(2.9)

Observing that there are 3.086 × 1019 km in a Mpc, and that there are 31556952 seconds in a year,
we see that

age of the universe = 1.37728× 10−2 s
Mpc

km
· 3.086× 1019 km

1 Mpc
· 1 yr

31556952 s

= 1.34686× 1010 yr

= 13.468 Gyr (billions of)

(2.10)

■

(Plot not required for submission)
Cosmic age as a function of scale factor.

The analytic solution to the integral is:

� 1

0

da

aH
√
Ωcdma−3 + ΩΛ

=
2

3H
√
ΩΛ

arcsin

(√
ΩΛ

Ωcdm

)
(2.11)
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ASTR 425/525 Cosmology Homework 1

Problem 3

a) As you saw in the previous problem, the age of the Universe is tightly related to the Hubble
constant H0. However, in the far future, once the cosmological constant completely dom-
inates the energy density of our universe, this relationship will break down. Show that a
far-future civilization will determine the age of the Universe to be infinite, independent of
H0.

b) What does this tell you about the symmetry structure of this Universe? Does it have more
symmetry as compared to a standard FLRW universe dominated by nonrelativistic matter?

a) Consider the far future when the cosmological constant energy density completely dominates.
By neglecting any other component (Ωcdm,Ωb,Ωr,Ωk → 0, making ΩΛ = 1 by definition), we
observe that the Hubble rate becomes constant:

H(a) = H0

√
ΩΛ + negligible components

= H0�
�

√
1

= H0

(3.12)

Following the same process as in problem 2, we can conclude that the age of the universe will
be given by:

t =
1

H0

� 1

0

da

a

=
1

H0

(
log(1)− log(0)

)
=

1

H0

(0−−∞)

= +∞

(3.13)

b) The universe acquires a temporal symmetry, making it (in the limit of a far future, i.e., asymp-
totically) time-translation invariant (analogous to isotropy/homogeneity for spatial symmetries).

We won’t be able to distinguish different times, because the universe will look the same whether
we look at it now or later in time (the energy composition remains fixed and the Hubble rate
becomes constant).

This kind of scenario is interesting for many reasons, such as (but not limited to):

� The expansion of the universe (a(t)) is a constant-rate exponential that won’t slow down.

� The horizon size is constant (here we mean the physical/proper distance) at all times.

� Observers born into this universe won’t be able to tell much about their cosmological past.
Any kind of useful information red-shifted/moved outside their horizon.

� These kinds of universes are examples of de Sitter spaces. There are some interesting
properties about these spaces, such as a non-zero vacuum temperature.
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ASTR 425/525 Cosmology Homework 1

Problem 4

Let’s consider the flat FLRW metric:

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2(θ)dϕ2)

]
where a(t) is the scale factor. For this problem, assume a realistic universe filled with matter,
radiation, and a cosmological constant, and use the following values of the cosmological parame-
ters:

H0 = 70.4 km/s/Mpc

Ωr = 0.000084

Ωm = 0.272

ΩΛ = 0.728 .

Here, we shall refer to epochs in the evolution of the Universe in terms of their redshift z, which
is related to the scale factor by

a(t) =
1

1 + z

a) Using the fact that photons always travel on null trajectories (ds2 = 0), compute the total
comoving distance that a photon will travel from the Big Bang at t = 0 to the epoch of
recombination at redshift z = 1090.

b) Now compute the total comoving distance that a photon will travel from the epoch of
recombination to the present time (z = 0).

c) Divide your answer from part (a) by that from part (b). Using a diagram, show that this
ratio is the maximum angle separating photons that were in causal contact in the distant
past, according to the metric above. Express this angle in degrees. Now, we observe
that cosmic microwave background (CMB) photons (which were emitted at the epoch of
recombination at z = 1090) from opposite points in the sky (i.e., points separated by 180
degrees) to have the same temperature to a high accuracy. Do you see a problem here?
Explain.

a) We want to find the comoving distance (i.e. distance on the expanding-grid of the universe)
for a photon traveling ever since the big bang up until redshift z = 1090 (corresponding to the
epoch of recombination). Because of the null trajectory (ds2 = 0), we see that

dt2 = a2(t)dr2 (4.14)

So the comoving distance is:

rcom =

�
dr =

� trec

t=0

1

a(t)
dt (4.15)

Observe that we not only don’t know (yet) what the integrand is (how does a depend on t),
but we also don’t know the equivalent cosmic time t corresponding to zrec = 1090. The easiest
way to approach this is to rewrite the t integral as an integral in terms of a (or equivalently, z).
Recall that we can rewrite the Friedmann equation as (see Eq. 2.144 in Baumann)

H(a) = H0

√
Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ (4.16)
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Since H = ȧ/a = da
dt

1
a
, it follows that:

dt =
da

Ha
(4.17)

So Eq. 4.15 can be written as

rcom =

� trec

0

dt

a

=

� arec

0

da

a2H

(setting Ωk = 0) =

� arec

0

da

a2H0

√
Ωra−4 + Ωma−3 + ΩΛ

(4.18)

This integral can’t be solved analytically, so we must resort to numerical methods. Because
of its relatively short integration interval, this integral is not inherently numerically-unstable.
Nonetheless, it is good practice to compute these integrals over redshift z rather than scale factor
a. Not only will the integrand be simpler, but it will make the integral numerically-tractable
for longer integration intervals such as the one in part (b).

Why changing to z is important in most cases.

One should generally plot integrands like the one on the right using a logarithmically spaced
horizontal axis. Here, a linear axis was used deliberately to illustrate potential numerical
instabilities. Observe that, over the integration domain for part (b), the integrand varies
rapidly at small a, to then become relatively stable at larger a. Most conventional numerical
integration codes/routines may struggle to find a reliable value if such the integrand is not
handled carefully and without human-set precision parameters.

Recalling that

a =
1

1 + z
(4.19)

We observe that

da = − dz

(1 + z)2
= −a2dz (4.20)
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And the integral in Eq. 4.18 becomes

rcom =

� ∞

zrec

dz

H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ

(4.21)

Where the negative sign was absorbed while flipping the limits of integration. Find code below:

1 import numpy as np

2 import scipy.integrate as integrate

3

4 # Set universe parameters

5 H0 = 70.4 # km/s/Mpc

6 Omega_r = 0.000084

7 Omega_m = 0.272

8 Omega_L = 0.728

9

10 # Define the function we want to integrate

11 def integrad(z):

12 return 1/(H0*np.sqrt(

13 + Omega_r *(1+z)**4

14 + Omega_m *(1+z)**3

15 + Omega_L)

16 )

17

18 z_rec = 1090

19 z_big_bang = np.inf

20

21 c = 2.997 e8 # m/s. To conver from (km/s/Mpc)^-1 to Mpc

22 # Integrate

23 r_com , error = integrate.quad(integrad , z_rec , z_big_bang)

24 print(f"{r_com :.4e} (km/s/Mpc)^-1")

25 print(f"{r_com*c/1000:.4e} Mpc") # The factor of 1/1000 converts km to m

From which we find that
rcom = 2.8459× 102 Mpc (4.22)

b) We can recycle the equation/code from part (a). We just need to modify the integration limits.
The initial time is zrec = 1090 and the final time is ztoday = 0 (minding the order in which we
place these limits of integration)

1 r_com , error = integrate.quad(integrad , 0, z_rec)

2 print(f"{r_com :.4e} (km/s/Mpc)^-1")

3 print(f"{r_com*c/1000:.4e} Mpc") # The factor of 1/1000 converts km to m

We find

rcom = 1.4072× 104 Mpc

= 14.072 Gpc
(4.23)

Fun fact: If we print the variable error returned by integrate.quad(), we can observe that
the integration error computed using the integrand expressed in scale factor is roughly 2.55
times larger than the error computed using the redshift version of the integrand.
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ASTR 425/525 Cosmology Homework 1

c) What we realize here is that the comoving distance a photon travels between the big bang
and the time of recombination is much (very much) smaller than the comoving distance that a
photon travels between the time of recombination and today.

Our past light cone (in red) sets the boundaries of what we can see. This light cone is quite
large, but notice that can observe light whose past light cones never intersect, hence they never
have causal contact. There is a maximum angle (spanning the black triangle) at which we can
observe photons from the CMB whose light cones intersect (here in blue and green). This angle
comes out to be

θ ≈ 284.59

14072
Radians

= 2.02238× 10−2 Radians

= 1.158◦

(4.24)

If we are observing that opposite points in the sky have the same temperature, then there is
something interesting going on. Why do they have the same temperature if these points were
never in causal contact? This is known as the horizon problem.

The problem is not that we can see light coming from the boundary of our past light cone, but
rather that their own light cones don’t intersect even though our observations seem to suggest
they do. ■
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Problem 5

Imagine a spatially-flat homogeneous and isotropic expanding universe filled exclusively with a
fluid with an equation of state w = 1 such that p = ρ. Let’s denote the present-day Hubble
expansion rate as H0 in this universe.

a) Using conservation of energy in an expanding universe, show that the energy density of this
fluid scales with the scale factor of the Universe a(t) as

ρ ∝ a(t)−6.

b) Compute the present age of this universe t0, as a function of H0. Is this universe older or
younger than a spatially-flat universe entirely filled with non-relativistic matter (w = 0)
with the same Hubble constant today?

c) Now imagine that after greatly improving their cosmological measurements, the inhabitants
of this universe discover that their universe is in fact not spatially flat but has instead a
small spatial curvature given by

ΩK = −0.01 .

Argue that this implies that their universe will eventually stop expanding and start to
contract. Assuming the usual normalization of the scale factor such that a(t0) = 1, compute
the value of the scale factor at which this turn-around point occurs.

d) Compute the total age tBC that this universe have at the time of its “big crunch” when the
entire universe has collapsed back to a point (i.e., a(tBC) = 0).

a) Let’s formally solve the continuity equation (Eq. 7, in the Continuity equation lecture notes):

dρ

dt
+ 3

da

dt

ρ+ p

a
= 0

dρ

da �
�
�da

dt
+ 3

�
�
�da

dt

2ρ

a
= 0

dρ

ρ
= −6

da

a�
dρ

ρ
=

�
−6

da

a

ln ρ = −6 ln a+ C

ln ρ = ln a−6 + C

ρ ∝ a−6

(5.25)

Where the proportionality is taken to drop the constant term. Observe that this proportionality
becomes an equality by introducing an initial condition, namely:

ρ(a) = ρ0a
−6 (5.26)

b) Recall that

H ≡ ȧ

a
=

da

dt

1

a
(5.27)
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So

dt =
da

aH
(5.28)

Where, in this universe filled exclusively with a w = 1 fluid,

H(a) = H0

√
Ωflda−6

= H0a
−3

(5.29)

The age of this universe follows as

tage =

� t

0

dt

=

� 1

a=0

da

aH0a−3

=
1

H0

� 1

0

a2da

=
1

H0

· 1
3

= 1/3 H−1
0

(5.30)

A universe filled with non-relativistic matter is twice as old:

tage =

� t

0

dt

=

� 1

a=0

da

aH0a−3(1+w)/2

setting w = 0... =
1

H0

� 1

0

a1/2da

= 2/3 H−1
0

(5.31)

c) If ΩK = −0.01, then we must have
Ωfld = 1.01 (5.32)

From the Friedmann equation we have

da

dt
= H0a

√
Ωflda−6 + ΩKa−2 (5.33)

The “turn-around” happens when da/dt = 0. This condition is equivalent to

ΩK + Ωflda
−4 = 0

1

a−4
=

Ωfld

−ΩK

a4 =
1.01

0.01
a = 3.17015

(5.34)

So when the universe expands to a size 3.17 times today’s size (with normalization atoday = 1),
the rate of change of the scale factor drops to 0. This is the turning point.
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d) The time to reach the turning point is:

tmax =
1

H0

� amax

a=0

da

a
√
Ωflda−6 + ΩKa−2

= 18.9564 H−1
0

(5.35)

The lifespan of the universe (the time it takes for it to grow from a = 0 to its largest expansion
amax and back) is then given by twice the time it takes to reach the maximum:

tBC = 37.9127 H−1
0 (5.36)

■
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