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ASTR 425/525 Cosmology Homework 1

Problem 1 (2 points)

Show that for close-by objects at a distance d away from us (H0d ≪ 1), the redshift z is approx-
imately given by

z ≃ H0d (1)

Does it matter whether d is a comoving, angular diameter, or luminosity distance?

Consider a Taylor expansion of a(t) around today’s time t0:

a(t) ≃ a(t0) + ȧ(t0)(t− t0) +O
[
(t− t0)

2
]

(2)

Where we can ignore terms of order 2 and higher. Now divide both sides by 1 = a(t0):

a(t) = 1 +
ȧ(t0)

a(t0)
(t− t0)

= 1 +H0(t− t0)

(3)

Then by definition of z:

z =
1

a
− 1

≃ 1

1 +H0(t− t0)
− 1

≃ 1−H0(t− t0)− 1

= H0(t0 − t)

(4)

Where we used the approximation 1
1+x

≃ 1 − x (for small x). In units of c = 1 (t − t0 = d) or with
the appropriate factors of c included, we can conclude that at small scales

z ≃ H0d (5)

This argument is reflected directly if we try to compute the comoving distance (relevant factor of c
added for reference)

dr =
dt

a(t)

χ = c

� t0

t1

dt

a(t)

≃ c

� t0

t1

1−H0(t− t0) dt

(Dropping 2nd order terms) ≃ c(t0 − t1)

(Using Eq. 4) = c
z

H0

(6)

This result fits the proposed relation between z and d (Eq. 1), where d is comoving distance here.
At small scales, Sk(χ) = χ, and a ≃ 1, so dA (the angular diameter distance) and dL (the luminosity
distance) are also well approximated by Eq. 1.
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ASTR 425/525 Cosmology Homework 1

Problem 2 (1 points)

A galaxy emits light of a particular wavelength. As the light travels, the expansion of the Universe
slows down and stops. Just after the Universe begins to recollapse, the light is received by an
observer in another galaxy. Does the observer see the light redshifted or blueshifted?

The question of whether light is observed to be red or blueshifted is not about the current expansion
rate but rather the current state compared to the time of emission.

Light is redshifted if atoday is larger than aemission. Light is blueshifted if atoday is smaller than aemission.

Since we are observing the galaxy light a bit after the turning point of the universe, it is safe to
assume that atoday > aemission, so we observe redshifted light.
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ASTR 425/525 Cosmology Homework 1

Problem 3 (4 points)

� In a flat spacetime, objects of a fixed physical size subtend smaller and smaller angels as they
are further and further away; in an expanding universe this is not necessarily true. Consider
the angular size θ(z) of an object of physical size L at redshift z. In a spatially-flat universe
with Ωm = 0.3 and ΩΛ = 0.7, at what redshift is θ(z)/L minimum?

� Assuming H0 = 70 km/s/Mpc, what is the angular size of a galaxy of physical size 10 kpc
at this redshift?

� What is the angular size of this galaxy at redshift z = 10?

� Recall that

dA ≡ l

θ
(7)

Where θ is the angular size, l ≡ L, and dA is the angular diameter distance. The quantity of
interest follows as θ(z)/L = 1/dA. The angular diameter distance in a spatially flat universe is
related to the comoving distance χ by

dA(a) = aχ (8)

And

χ(z) =

� z

0

dz′

H(z′)
. (9)

In a universe with only matter and dark energy,

H(z) = H0

√
Ωm(z + 1)3 + ΩΛ (10)

So

θ(z)/L =
1

aχ(z)

=
1 + z

χ(z)

=
1 + z� z

0
dz′

H0

√
Ωm(z′+1)3+ΩΛ

(11)

We can use numerical methods to find the the minimum of this function. For this example,
I use minimize scalar (from scipy.optimize), but there are other libraries and approaches
(e.g., one can consider finding θ′(z) and use a root-finding algorithm on this function instead.)

Find code and a plot on the next page.
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ASTR 425/525 Cosmology Homework 1

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import scipy.integrate as integrate

4 from scipy.optimize import minimize_scalar

5

6 # Parameters

7 Omega_m = 0.3 # Matter

8 Omega_L = 0.7 # Dark Energy in the form of a cosmological constant.

9

10 def H(z):

11 return np.sqrt(Omega_m *(1+z)**3 + Omega_L)

12

13 def integrand(z):

14 return 1/H(z)

15

16 def chi(z):

17 comoving_distance , integration_error = integrate.quad(integrand ,0,z)

18 return comoving_distance

19

20 def angular_size(z):

21 return (1+z)/chi(z)

22

23 # Numerically find where the minimum occurs

24 min_z = minimize_scalar(angular_size ,bounds =(0.001 ,5))

25 # Do note that the minimum is accessed by printing min_z.x, rather than min_z

26 print(f"The minimum angular size occurs at z = {min_z.x:.3f}")

The minimum angular size occurs at z = 1.605

Find code to reproduce this plot below.

5



ASTR 425/525 Cosmology Homework 1

1 # Plot of the angular size

2 fig , ax = plt.subplots(figsize =(8, 5))

3 ax.tick_params(axis=’both’, labelsize =15)

4 Z = np.linspace (0.001 ,20 ,500)

5 plt.plot(Z,[ angular_size(ZZ) for ZZ in Z],label=r"$\theta / LH_0 $",color="

red")

6 plt.yscale("log")

7 plt.xlabel(r"Redshift $z$",fontsize =15)

8 plt.ylabel(r"Angular size $\theta$ [$1 /L H_0 $]",fontsize =15)

9 plt.axvline(x=min_z.x,color="black",label=rf"Minimum at $z=${min_z.x:.3f}",

linestyle="--")

10 plt.legend(fontsize =15)

11 plt.savefig("problem_3_angular_size_as_a_function_of_z.png",dpi=400,

transparent=True ,bbox_inches=’tight ’)

� Observing that

θ(z) =
L(1 + z)

χ(z)
(12)

We can compute χ using H0 in km/s/Mpc as long as we handle the units accordingly. θ is a
dimensionless number (radians), so all we have to take care of is having L in Mpc and adding
a factor of c (speed of light) where appropriate to vanish km/s.

θ = (0.01 Mpc)(1 + z)
(
χ(z) km/s/Mpc−1)−1

(
c−1 s

m

)(
1000

m

km

)
= 1.179 arcseconds

(13)

With code:

1 L =0.01 # Mpc

2 c = 3e8 # m/s

3 meters_over_kilometers = 1000

4 H0 = 70 # km/s/Mpc

5 redshift = min_z.x

6

7 radians = L*(1+ redshift)*H0*(1/ chi(redshift))*(1/c)*meters_over_kilometers

8 # ^

9 # This factor of H0 goes here since the chi function

10 # returns chi in units of [H0^-1]

11 degrees = radians *180/np.pi

12 arc_minutes = degrees * 60

13 arc_seconds = arc_minutes * 60

14 print(f"{arc_seconds :.3f} Arcseconds")

Note: Adding factors of c is not artificial by any means. Recall that comoving distances are
computed using the metric, where we set c = 1 at the beginning of the course.

� Using the same equation/code as in part 2, we conclude that

θ = 2.402arcseconds
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ASTR 425/525 Cosmology Homework 1

Problem 4 (5 points)

For this question, consider a flat FLRW universe with

H0 = 67.66 km/s/Mpc

Ωm = 0.311

Ωrad = 9.1× 10−5

ΩΛ = 1− Ωm − Ωrad

a) Plot the age of the Universe as a function of redshift. Remember that z = 0 corresponds to
the present age of the Universe.

b) Starting at the Big Bang (z = ∞), what fraction of the current age of the Universe has
elapsed by z = 2? What about z = 10?

c) How old was the Universe at z = 1090, when the photons making up the cosmic microwave
background were released?

a) From first principles, the age of the universe is given by the integral

t =

�
dt

t(a) =

� a

0

da′

a′H(a′)

Using da = − dz

(1 + z)2
t(z) =

� z

∞

dz′

−(1 + z′)H(z′)

=

� ∞

z

dz′

(1 + z′)H(z′)

(14)

We can’t plot from z = 0 to z = ∞, but a sufficiently large value of z suffices.

Find code to reproduce this plot on the next page.
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ASTR 425/525 Cosmology Homework 1

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import scipy.integrate as integrate

4

5 # Parameters

6 Omega_m = 0.311 # Matter

7 Omega_rad = 9.1e-5 # Radiation

8 Omega_L = 1-Omega_m -Omega_rad # Cosmological constant.

9 H0 = 67.66 # km/s/Mpc

10

11 km_over_Mpc = 3.086 e19

12 seconds_to_Gyrs = 1/(60*60*24*365*1000000000)

13

14 def H(z):

15 return H0*np.sqrt(Omega_m *(1+z)**3 + Omega_L + Omega_rad *(1+z)**4)

16

17 def integrand(z):

18 return 1/((1+z)*H(z))

19

20 def age(z):

21 age_of_universe , integration_error = integrate.quad(integrand ,z,np.inf)

22 # The above is in units of [s Mpc / km]. It is good to:

23 # 1. Remove units of distance

24 # 2. Convert seconds to Gyrs

25 age_in_Gyrs = age_of_universe * km_over_Mpc * seconds_to_Gyrs

26 return age_in_Gyrs

27

28 # The age today is ~ 13 Gyrs. This is a good way to check that the code works

:

29 print(f"Age today: {age(0):.3f} Gyrs")

30

31 # Plot age as a function of z

32 fig , ax = plt.subplots(figsize =(12, 5))

33 ax.tick_params(axis=’both’, labelsize =15)

34 Z = np.linspace (0.001 ,4999 ,20000)

35 plt.plot(Z,[age(ZZ) for ZZ in Z],label="Age [Gyrs]",color="black")

36 plt.yscale("log", base =13)

37 plt.xscale("log")

38 plt.xlabel(r"Redshift $z$",fontsize =15)

39 plt.ylabel("Age [Gyrs]",fontsize =15)

40 plt.axvline(x=2,color="red",label=rf"$z=2$",linestyle="--")

41 plt.axvline(x=10, color="green",label=rf"$z=10$",linestyle="--")

42 plt.axvline(x=1090 , color="blue",label=rf"$z =1090$",linestyle="--")

43 plt.legend(fontsize =15)

44 ax.invert_xaxis ()

45 plt.savefig("problem_4_age_as_a_function_of_z.png",dpi=400, transparent=True ,

bbox_inches=’tight ’)

Where the relevant unit conversion factors were added to return age in units of Gyrs.
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ASTR 425/525 Cosmology Homework 1

b) Now that we constructed a python function that returns the age at a given z (age(z)), it is a
simple matter of calling it at the specified values. We observe that

Age(z = 0) = 13.7980 (15)

Age(z = 2) = 3.2793 (16)

Age(z = 10) = 0.4716 (17)

By z = 2, 3.2793
13.7980

· 100% = 23.77% of the current age has elapsed.

By z = 10, 0.4716
13.7980

· 100% = 3.42% of the current age has elapsed.

c) At z = 1090, the universe was 0.000372 Gyrs old (372 kiloyears).
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ASTR 425/525 Cosmology Homework 1

Problem 5 (10 points)

Observations of Type Ia supernovae were instrumental in the discovery of the acceleration of the
expansion and the related presence of dark energy. In this question, we will use some recent
supernova data to indeed visually show that a flat universe with ΩΛ = 0.7 and Ωm = 0.3 is a
much better fit to the data than a matter-dominated universe with Ωm = 1.

Start by downloading the data here (a link is also posted on the course webpage). The file contains
three columns, giving the redshift (z), the apparent magnitude of the supernova m, and the error
on the apparent magnitude ∆m, respectively.

a) Using your favorite plotting package, plot m versus z for all supernovae in the data file.
Make sure to include the error bar on m for each data point. Clearly label your axes.

b) Now, add the predictions for the two cosmological models mentioned above:

Model 1 : ΩΛ = 0.7, Ωm = 0.3

Model 2 : Ωm = 1

on your plot. To do so, remember that the predicted apparent magnitude mpred(z) for a
supernova at redshift z is related to the absolute supernova magnitude M and the distance
modulus µ(z) by

mpred(z) = µ(z) +M (18)

where

M = −19.4 (19)

µ(z) = 5 log10

(
dL(z)

Mpc

)
+ 25 (20)

where dL(z) is the luminosity distance to redshift z in Mpc. Use H0 = 67.5 km/s/Mpc and
be mindful of the units when computing dL. Make sure the two models and the data points
(with their error bars) are clearly visible on your plot.

c) Which model appears to be a better fit to the data? Is this conclusion robust to changing
M?

a) We can use the following code to plot the data along with the error bars:

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 data = np.loadtxt("Pantheon_data.dat").T

5 # By adding .T, we are transposing the array generated from the .dat file.

6 # This way , we have

7 # data [0] A list of redshifts

8 # data [1] A list of m

9 # data [2] A list of errors in m

10

11 # Plot

12 fig , ax = plt.subplots(figsize =(12, 6))

10
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ASTR 425/525 Cosmology Homework 1

13 ax.tick_params(axis=’both’, labelsize =15)

14 plt.errorbar(

15 data[0], data[1], yerr=data[2],

16 fmt=’o’,

17 markersize =3.5,

18 color=’red’,

19 alpha =0.3,

20 ecolor=’black ’,

21 capsize=3,

22 label=r"$m(z)\pm$error"

23 )

24 plt.xscale("log")

25 plt.xlabel(r"Redshift $z$",fontsize =15)

26 plt.ylabel(r"$m$",fontsize =15)

27 plt.legend(fontsize =15)

28 plt.savefig("problem_5_data_plot.png",dpi=400, transparent=True ,bbox_inches=’

tight ’)

b) Recall that
dL = (z + 1)Sk(χ) (21)

Where Sk in a spatially-flat universe follows as

Sk(χ) = χ

=

� z

0

dz′

H(z′)

(22)

The Hubble rates for each model is given by:

Model 1: H(z) = H0

√
ΩΛ + Ωm(1 + z)3 (23)

Model 2: H(z) = H0

√
Ωm(1 + z)3 (24)
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ASTR 425/525 Cosmology Homework 1

The only unit-sensitive function we need to code is H. We need H(z) to be in 1/Mpc. We can
introduce a factor of c and a conversion from kilometers to meters to fix this:

H0 = 67.5
km

s ·Mpc
= 67.5

km

s ·Mpc
· c−1 s

m
· 1000 m

km
(25)

We can use the code

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import scipy.integrate as integrate

4

5 # Parameters

6 model_1 = [0.3 ,0.7] # Omega_m , Omega_L

7 model_2 = [1.0 ,0.0] # Omega_m , Omega_L

8 c = 3e8 # m/s

9 H0 = 67.5 * 1000 / c # 1/Mpc

10 M = -19.4

11 def integrand(z,fractions):

12 Omega_m = fractions [0]

13 Omega_L = fractions [1]

14 return 1/(H0*np.sqrt(Omega_m *(z+1) **3 + Omega_L))

15

16 def Sk(z,fractions): #Comoving distance

17 com_dist , integration_error = integrate.quad(integrand ,0,z,args=fractions

)

18 return com_dist

19

20 def dL(z,fractions):

21 return (z + 1)*Sk(z,fractions)

22

23 def mu(z,fractions):

24 return 5*np.log10(dL(z,fractions)) + 25

25

26 def m_pred(z,fractions):

27 return mu(z,fractions) + M

28

29 data = np.loadtxt("Pantheon_data.dat").T

30

31 # Plot of data

32 fig , ax = plt.subplots(figsize =(12, 6))

33 ax.tick_params(axis=’both’, labelsize =15)

34 plt.errorbar(

35 data[0], data[1], yerr=data[2],

36 fmt=’o’,

37 markersize =3.5,

38 color=’red’,

39 alpha =0.1,

40 ecolor=’black ’,

41 capsize=3,

42 label=r"$m(z)\pm$error",

43 zorder =0

44 )

45 plt.xscale("log")

46 plt.xlabel(r"Redshift $z$",fontsize =15)

47 plt.ylabel(r"$m$",fontsize =15)

48
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49

50 # Compute predictions

51

52 Z = np.linspace(np.min(data [0]),

53 np.max(data [0]),

54 500)

55

56 plt.plot(Z,

57 [m_pred(ZZ,model_1) for ZZ in Z],

58 label="Model 1 (70% dark energy)",

59 zorder=2,

60 color="blue",

61 linewidth =2.5)

62

63 plt.plot(Z,

64 [m_pred(ZZ,model_2) for ZZ in Z],

65 label="Model 2 (no dark energy)",

66 zorder=2,

67 color="green",

68 linewidth =2.5)

69

70 plt.legend(fontsize =15)

71 plt.savefig("problem_5_data_with_predictions.png",dpi=400, transparent=True ,

bbox_inches=’tight ’)

To generate the plot

c) The predictions from Model 1 (with dark energy) are much closer to the observed data.
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Problem 6 (4 points)

For this question, assume the same cosmological parameters given in question 4 above, unless
otherwise noted.

a) Compute the redshift at which the energy density in dark energy is equal to that of matter.
How much time has elapsed betwen that epoch and today? Compare this timescale to the
age of the Solar system (4.6 Gyrs). This is often referred to as the “coincidence” problem.

b) Imagine a universe in which there are 2 extra species of massless neutrinos (in addition to
those present in the Standard Model of particle physics). What is the redshift of matter-
radiation equality in such a universe? Assume that the extra neutrinos have the same
temperature as the standard ones.

a) From problem 4, recall that

H0 = 67.66 km/s/Mpc

Ωm = 0.311

ΩΛ = 0.688909

(26)

The density parameters scale as:

Ωm(z) =

(
H0

H(z)

)2

(z + 1)3Ωm,0 (27)

ΩΛ(z) =

(
H0

H(z)

)2

ΩΛ,0 (28)

If we set Eqs. 27 and 28 equal to each other, we see that

(zeq + 1)3 =
ΩΛ,0

Ωm,0

zeq =
3

√
ΩΛ,0

Ωm,0

− 1

= 0.304

(29)

Using the python functions defined on problem 4, we observe that

Age(z = 0.304) = 10.229 Gyrs (30)

In other words, the density parameters were equal

13.798− 10.229 = 3.569 Gyrs (31)

Which is in the same timescale as the time of the Solar system’s creation.
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b) Computing the matter-radiation equality follows as above (with Ωrad instead of ΩΛ), but we
must first find the right Ωrad,0, since the one given in problem 4

Ωrad,0 = 9.1× 10−5 (From problem 4)

Only includes the standard model (SM) neutrinos. Once we find the neutrino (SM+BeyondSM
neutrinos) density parameter, as well as the photon contribution (recall that we are only given
the total radiation budget of the universe), we can get the right value for Ωrad,0. From the
Energy Content of the Universe lecture notes, recall that

Ωγ,0 = 2.47× 10−5h−2

= 5.395× 10−5 (32)

This number does not change here. Further, h = 67.66/100 in this case. For neutrinos:

Ων,0 = 1.68× 10−5h−2

(
Neff

3

)
=

{
3.723× 10−5 if Neff = 3.044

6.17× 10−5 if Neff = 2 + 3.044

(33)

The first case was the one used in problem 4 (hence Ωrad,0 = 9.1 × 10−5 in problem 4). Using
the second case (Neff = 5.044) we get:

Ωrad,0 = 1.156× 10−4 (34)

Equality happens when Ωm = Ωrad, where

Ωrad(z) =

(
H0

H(z)

)2

(z + 1)4Ωrad,0 (35)

So

(zeq + 1)4Ωrad,0 = (zeq + 1)3Ωm,0

zeq + 1 =
Ωm,0

Ωrad,0

zeq =
Ωm,0

Ωrad,0

− 1

=
0.311

1.156× 10−4
− 1

= 2689.31

(36)

A number that’s smaller (in other words, later in time) compared to the standard model time
(redshift) corresponding to matter-radiation equality: zeq,SM ≃ 3400.
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