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ASTR 425/525 Cosmology Homework 1

Problem 1 (8 points)

Consider the exact expression for the number density of a fermion of mass m in thermal equilib-
rium with zero chemical potential

n = g

�
d3p

(2π)3
1

exp
(√

p2 +m2/T
)
+ 1

(1)

a) Using x = p/T and y = m/T , show that the above can be rewritten in the following form:

n(y)

T 3
=

g

2π2

� ∞

0

dx
x2

e
√

x2+y2 + 1
(2)

b) Using numerical integration and a plotting software of your choice, plot n(y)/T 3 as a function
of y = m/T . Assume that g = 2 (like for an electron). Clearly label your axes.

c) Now, add to your plot both the relativistic (y ≪ 1) and non-relativistic (y ≫ 1) limit for
the number density of this fermion that we derived in class. Remember to convert them to
functions of y, and plot n(y)/T 3 for those too. Confirm that these results match the exact
result plotted in part (b) in the appropriate limit.

a) Consider rewriting the expression as

n = g

�
d3p

(2π)3
1

exp

(√(
p
T

)2
+
(
m
T

)2)
+ 1

(3)

Recalling that d3p ≡ 4πp2dp (integrating the angular part out), we see that

n = g
4π

(2π)3

� ∞

0

p2dp

exp

(√(
p
T

)2
+
(
m
T

)2)
+ 1

= g
1

2π2

� ∞

0

p2dp

exp

(√(
p
T

)2
+
(
m
T

)2)
+ 1

(4)

Since the variable y = m/T is independent of the integration variables, its introduction can be
inserted directly:

n = g
1

2π2

� ∞

0

dp
p2dp

exp

(√(
p
T

)2
+ y2

)
+ 1

(5)

To introduce x, we note that dp = Tdx, so

n = g
1

2π2

� ∞

0

dp
(xT )2Tdx

exp
(√

x2 + y2
)
+ 1

= g
1

2π2
T 3

� ∞

0

dp
x2dx

exp
(√

x2 + y2
)
+ 1

(6)
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From which we can conclude that

n(y)

T 3
=

g

2π2

� ∞

0

dx
x2

e
√

x2+y2 + 1
(7)

b) We can use scipy.integrate.quad for this:

1 import scipy.integrate as integrate

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 def integrand(x,y):

6 return x**2 /(np.exp(np.sqrt(x**2 + y**2))+1)

7

8 def n(y,g=2): # over T^3

9 pre_factor = g/(2*np.pi**2)

10 integral , error = integrate.quad(lambda x: integrand(x,y), 0, np.inf)

11 return pre_factor * integral

12

13 y = np.logspace (-2,2,200)

14

15 n_over_T_cubed = [n(yy ,2) for yy in y]

16

17 plt.plot(y,n_over_T_cubed ,color="black")

18 plt.xscale("log")

19 plt.xlabel(r"$y=m/T$")
20 plt.ylabel(r"$n(y)/T^3$")
21 plt.savefig("p1_part_b.png",dpi=300, bbox_inches=’tight’)
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c) Starting from the expression for nNR:

nNR = g

(
mT

2π

)3/2

e−m/T

nNR

T 3
= g

(m
2π

)3/2 T 3/2

T 3
e−y

= g
(m
2π

)3/2
T−3/2e−y

= g
( m

2πT

)3/2
e−y

= g
( y

2π

)3/2
e−y

(8)

For the relativistic limit, observe that nRel/T
3 is a constant:

nRel, fermions

T 3
=

3

4

gζ(3)

π2
(9)

The plot follows:

Based on the code for part (b):

1 import scipy.integrate as integrate

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 def integrand(x,y):

6 return x**2 /(np.exp(np.sqrt(x**2 + y**2))+1)

7

8 def n(y,g=2): # over T^3

9 pre_factor = g/(2*np.pi**2)

10 integral , error = integrate.quad(lambda x: integrand(x,y), 0, np.inf)

11 return pre_factor * integral

12

13 def n_non_rel(y,g=2): # over T^3
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14 return g * np.exp(-y)*(y/(2*np.pi))**(3/2)

15

16 zeta_3 = 1.20206

17

18 def n_rel(g=2): # over T^3

19 # This is constant

20 return g * (3/4) * zeta_3 / (np.pi**2)

21

22 y = np.logspace (-3,3,200)

23

24 n_over_T_cubed = [n(yy ,2) for yy in y]

25

26 n_over_T_cubed_non_rel = [n_non_rel(yy ,2) for yy in y]

27

28 n_over_T_cubed_rel = [n_rel (2) for yy in y]

29

30 plt.plot(y,n_over_T_cubed ,color="black",label="exact result")

31 plt.plot(y,n_over_T_cubed_non_rel ,color="red",linestyle="--",label="non -

relativistic limit")

32 plt.plot(y,n_over_T_cubed_rel ,color="blue",linestyle="--",label="relativistic

limit")

33 plt.xscale("log")

34 plt.xlabel(r"$y=m/T$")
35 plt.ylabel(r"$n(y)/T^3$")
36 plt.legend(loc="center left")

37 plt.savefig("p1_part_c.png",dpi=300, bbox_inches=’tight’)

5



ASTR 425/525 Cosmology Homework 1

Problem 2 (6 points)

When the chemical potential µ of a given species vanishes, the number of particles (n) and
antiparticles (n) of that species in the cosmic plasma are equal. However, the presence of µ ̸= 0
results in a net particle number density, n− n ̸= 0.

a) For relativistic fermions with µ ̸= 0 and T ≫ m, show that

n− n =
g

2π2

� ∞

0

dp p2

(
1

exp
(
p−µ
T

)
+ 1

− 1

exp
(
p+µ
T

)
+ 1

)

=
g

6π2
T 3

[
π2
(µ
T

)
+
(µ
T

)3] (10)

Note that this is an exact result in the relativistic limit and not a truncated series.

b) Now, let’s apply the above result to electrons and positrons in their relativistic limit (T ≫ 1
MeV). Electric charge neutrality in the early universe implies that np = ne − ne, where np

is the number density of protons. Use this to show that, in the early universe, we have

µe

T
≃ 3ηbζ(3)

π2

where ηb ≡ nb/nγ is the baryon-to-photon ratio, with nb and nγ being the baryon and pho-
ton number densities, respectively.

Hint: Relate the proton number density to the baryon number density. Do not forget the
presence of neutrons. What is the relative abundance of neutrons and protons for T ≫ 1
MeV?

a) Recall that (exactly)

n =
g

2π2

� ∞

0

dp
p2

exp ([E − µ] /T ) + 1
(11)

Now, in the relativistic limit, we have

p ≫ m

⇒ E ≃ p
(12)

So

n =
g

2π2

� ∞

0

p2

exp ([p− µ] /T ) + 1
(13)

Similarly for n:

n =
g

2π2

� ∞

0

p2

exp ([p+ µ] /T ) + 1
(14)

Together it is then clear that

n− n =
g

2π2

� ∞

0

dp p2

(
1

exp
(
p−µ
T

)
+ 1

− 1

exp
(
p+µ
T

)
+ 1

)
(15)
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If we introduce the variables

x = p/T

y = µ/T
(16)

Then p = xT and dp = Tdx, so that

n =
g

2π2

� ∞

0

(Tx)2Tdx

exp(x− y) + 1

=
gT 3

2π2

� ∞

0

x2dx

exp(x− y) + 1

(17)

Similarly for n:

n =
gT 3

2π2

� ∞

0

x2dx

exp(x+ y) + 1
(18)

We can now introduce a 3rd substitution (different for each integral) in the form of a shift:

(for n) u = x− y

(for n̄) u = x+ y
(19)

So that

(n− n)
2π2

gT 3
=

� ∞

0

x2

ex−y + 1
− x2

ex+y + 1
dx

=

� ∞

−y

(u+ y)2du

eu + 1
−

� ∞

y

(u− y)2du

eu + 1

=

� y

−y

(u+ y)2du

eu + 1
+

� ∞

y

(u+ y)2du

eu + 1
−

� ∞

y

(u− y)2du

eu + 1

=

� y

−y

(u+ y)2du

eu + 1
+

� ∞

y

(u+ y)2 − (u− y)2 du

eu + 1

=

� y

−y

u2 + 2uy + y2

eu + 1
du +

� ∞

y

4yu

eu + 1
du

(20)

Let’s focus on the first term. Observing that

1

eu + 1
+

1

e−u + 1
= 1 (21)

We can split the [−y, y] integral into two, one in [−y, 0] and one in [0, y] and manipulate them
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using the identity above:

� y

−y

u2 + 2uy + y2

eu + 1
du =

� 0

−y

u2 + 2uy + y2

eu + 1
du +

� y

0

u2 + 2uy + y2

eu + 1
du

=

� y

0

u2 − 2uy + y2

e−u + 1
du +

� y

0

u2 + 2uy + y2 − 2uy + 2uy

eu + 1
du

=

� y

0

u2 − 2uy + y2

e−u + 1
du +

� y

0

u2 − 2uy + y2 + 4uy

eu + 1
du

=

� y

0

u2 − 2uy + y2

e−u + 1
du +

� y

0

u2 − 2uy + y2

eu + 1
du +

� y

0

4uy

eu + 1
du

=

� y

0

(
u2 − 2uy + y2

)
�����������(

1

eu + 1
+

1

e−u + 1

)
du +

� y

0

4uy

eu + 1
du

=

� y

0

(
u2 − 2uy + y2

)
du +

� y

0

4uy

eu + 1
du

=
y3

3
+

� y

0

4uy

eu + 1
du

(22)

Up to this point, we have

(n− n)
2π2

gT 3
=

y3

3
+

� y

0

4uy

eu + 1
du +

� ∞

y

4yu

eu + 1
(23)

We can merge the remaining two integrals into one in [0,∞], where we can make use of the
identity: � ∞

0

dx
x

ex + 1
=

π2

12
(24)

It follows that

(n− n)
2π2

gT 3
=

y3

3
+

� y

0

4uy

eu + 1
du +

� ∞

y

4yu

eu + 1

=
y3

3
+ 4y

� ∞

0

u

eu + 1
du

=
y3

3
+ 4y

π2

12

=
y3

3
+

π

3
y

(plugging back y = µ/T ) =
1

3

(µ
T

)3
+

π

3

µ

T

(n− n) =
g

2π2
T 3

[
1

3

(µ
T

)3
+

π

3

µ

T

]
=

g

6π2
T 3

[
π2
(µ
T

)
+
(µ
T

)3]

(25)

as expected.
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Note: If you use an integral calculator (such as Integrate[] in Mathematica). You will
get PolyLogs, in fact:

n− n =
g

2π2

(
− 2T 2Li3

[
−eµ/T

]
−−2T 3Li3

[
−e−µ/T

])
=

g

2π2
2T 3

(
Li3
[
(−eµ/T )−1

]
− Li3

[
−eµ/T

]) (26)

These PolyLogs are trilogarithms (Li3 [·]), and they satisfy the following identity:

Li3
[
x−1
]
− Li3 [x] =

1

6
ln3(−x) +

π2

6
ln(−x) (27)

Where in our case, x = −eµ/T , so

n− n =
g

2π2
2T 3

(
1

6

[µ
T

]3
+

π2

6

µ

T

)
=

g

6π2
T 3

[
π2
(µ
T

)
+
(µ
T

)3] (28)

as before.

b) At high temperatures (above 1 MeV), neutrons and protons were in thermal equilibrium, in
such a way that their chemical potentials were the same:

p+ νe ↔ n+ e+

p+ e− ↔ n+ νe

µn = µp

(29)

So np ∼ nn, which in turn implies
nb ∼ 2np (30)

Further, at very high temperatures we have

n− n ≃ g

6π2
T 3π2

(µ
T

)
=

g

6
T 2µe

(31)

With this in mind, we see that

np = ne − ne

1

2
nb =

g

6
T 2µe

nb =
g

3
T 2µe

(32)

Now, let’s introduce ηb (the baryon photon ratio)

ηb ≡ nb

nγ

(33)
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in order to eliminate nb. Recalling that

(for relatisivtic bosons) n(T ) =
gζ(3)

π2
T 3 (34)

we see that

nb =
g

3
T 2µe

nγηb =
g

3
T 2µe

gζ(3)

π2
T 3ηb =

g

3
T 2µe

µe

T
=

gζ(3)

π2
· ηb

3

g

=
3ηbζ(3)

π2

(35)

As expected.
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Problem 3 (6 points)

A we discussed in class, cosmological neutrinos are slightly colder than cosmic microwave back-
ground photons today with

Tν =

(
4

11

)1/3

Tγ (36)

where Tν is the neutrino temperature, and Tγ is the photon temperature.

a) Show that the combined number density of one generation of neutrinos and anti-neutrinos
in the Universe today is

nν =
3

11
nγ, (37)

where nγ is the number density of photons today.

b) Use the result above to show that the contribution from all species of non-relativistic massive
neutrinos to the critical density of the Universe today is given by

Ωνh
2 =

Σimν,i

94 eV
(38)

where h is the reduced Hubble rate, and
∑

i mν,i denotes the sum of neutrinos masses,
summed over all neutrino species.

a) Recall that in the relativistic limit, for bosons (photons)

nγ = gγ
ζ(3)

π2
T 3
γ (39)

And for fermions (neutrinos):

nν =
3

4
gν

ζ(3)

π2
T 3 (40)

Now, let’s use the fact that gν = gγ (in this scenario of 1 generation) and the fact that Tν =(
4
11

)1/3
Tγ to see that

nν =
3

4
gν

ζ(3)

π2
T 3

=
3

�4
gγ

ζ(3)

π2

�4

11
T 3
γ

=
3

11
· ζ(3)gγ

π2
Tγ

=
3

11
· nγ

(41)

b) Let’s be a bit mindful here: In part (a), we considered a relativistic scenario. We now want
the non-relativistic counterpart. Luckily, the number density is conserved, so we can still use
nν = 3

11
nγ. Now, non-relativistic physics shows up when we bring in the fact that

ρi ≃ mini (42)
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For neutrinos, and considering 3 species, we have:

ρν =
∑

i∈{flavors}

mν,inν,i

=

(∑
i

mν,i

)
nν

=
3

11

(∑
i

mν,i

)
nγ

(43)

We can now compute

Ωνh
2 =

ρν
ρc
h2

=
h2

ρc

3

11
nγ

(∑
i

mν,i

)

Recalling that (both values can be found in the Thermo for relativistic particles lecture
notes)

nγ(today) = 410 cm−3

ρc =
3H2

0

8πG
= h2 · 8.098× 10−11 eV4

= h2 · 1.0537× 104 eV · cm−3

(44)

So

Ωνh
2 =

h2

ρc

3

11
nγ

(∑
i

mν,i

)

=
3

11
· h2

h2 · 1.0537× 104 eV · cm−3
· (410 cm−3) ·

(∑
i

mν,i

)

=
1

94.233 eV

(∑
i

mν,i

)

As expected.
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Problem 4 (8 points)

If the neutrinos were massless in our Universe, the relative energy density of neutrinos as compared
to that of photons would be constant for T ≲ 0.1 MeV (after e+e− annihilation), that is, ρν/ργ =
const.

a) Assuming that all three neutrino species present in our Universe are massless, compute the

ratio ρν/ργ for T ≲ 0.1 MeV. Remember that Tν =
(

4
11

)1/3
Tγ.

b) In the real universe, we know that at least two neutrino species have non-vanishing masses.
A realistic model compatible with the results of neutrino oscillation experiments is to have
one massless neutrino (m1 = 0), a second one with mass m2 = 0.01 eV, and a third one
with mass m3 = 0.05 eV.

Compute the ration ρν(z)/ργ(z) in this scenario over the redshift range 0 ≤ z ≤ 103 and
plot it using your favorite plotting package. Clearly label your axes. Add the constant
line you found in part (a) to your plot as a comparison. Note that since massive neutrinos
always decouple from the cosmic plasma while ultra-relativistic, their energy density (for
one species) is given by

ρν(Tν) = g

�
d3p

(2π)3

√
p2 +m2

ν

ep/Tν + 1
(45)

a) For relativistic bosons (photons) we have

ργ = gγ
π2

30
T 4
γ (46)

For relativistic fermions (massless neutrinos in this case) we have

ρν = gν
7

8

π2

30
T 4
ν

= gν
7

8

π2

30

(
4

11

)4/3

T 4
γ

(47)

So

ρν
ργ

=
gν

7
8
π2

30

(
4
11

)4/3
T 4
γ

gγ
π2

30
T 4
γ

=
21

8
·
(

4

11

)4/3
(48)

b) We already know ργ(Tγ). To write it as a function of redshift, recall that T ∝ 1
a
, so

Tγ =
T0

a
= T0(1 + z) (49)

Where T0 is the temperature from the CMB today. For each one of the neutrino flavors, we
have

ρν,i(Tν) =
��gν,i

�2π2

� ∞

0

dp
p2
√
p2 +m2

ν,i

ep/Tν + 1
(50)
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Where gν,i = 2 for each of the flavors (hence the cancellation). We can use python to compute
the ratio ρν

ργ
at all times exactly. (This python code will print out a plot of the energy densities

and another plot with the ratio)

For this problem, it is recommended to use integration libraries with more precision, for example
npmath.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import mpmath as mp

4 mp.dps = 50

5

6 def photon_integrand(p,T):

7 return p**2 * p / (mp.exp(p/T) -1)

8

9 def neutrino_integrand(p,m,T):

14
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10 return p**2 * mp.sqrt(p**2 + m**2) / (mp.exp(p/T)+1)

11

12

13 def rho_neutrino_flavor(mass ,T_photon):

14 T_neutrino = (4/11) **(1/3) * T_photon

15 integral = mp.quad(

16 lambda x: neutrino_integrand(x,mass ,T_neutrino),

17 [0, mp.inf]

18 )

19 # g neutrino is 2 per flavor

20 return integral / mp.pi**2

21

22 def rho_photons(T_photon):

23 integral = mp.quad(

24 lambda x: photon_integrand(x,T_photon),

25 [0, mp.inf]

26 )

27 # g neutrino is 2 per flavor

28 return integral / mp.pi**2

29

30 masses = [0.0 ,0.01 ,0.05] #eV

31

32 # Scale factor values

33 # We want from today z=0 to z=10^3

34 scale_factors = np.logspace (-3,0,100)

35

36 # CMB temp

37 T0 = 2.348*10**( -4) # eV

38

39 temperatures = T0/scale_factors # photon temperatures

40

41 rho_g = np.array ([ rho_photons(temp) for temp in temperatures ])

42 rho_n = np.array ([[ rho_neutrino_flavor(m,temp) for temp in temperatures] for

m in masses ])

43

44 """

45 Double axes stuff

46 """

47

48 plot_scale_factors = [10** -3 ,10** -2 ,10** -1 ,10**0]

49 plot_temperatures_neutrino = ["1.67e-1","1.67e-2","1.67e-3","1.67e-4"]

50

51 """

52 Show individual densities

53 """

54 fig , ax = plt.subplots ()

55 colors = ["red","green","blue"]

56 for color , mass , rho_one_flavor in zip(colors ,masses ,rho_n):

57 ax.plot(scale_factors ,rho_one_flavor ,color=color ,label=fr"$\rho_\nu$ mass

{mass :.2f}",alpha =0.5)

58

59 ax.plot(scale_factors ,sum(rho_n),color="m",label=r"$\Sigma \rho_\nu$ ")

60

61 ax.plot(scale_factors ,rho_g ,color="black",label=r"$\rho_{\gamma }$",linestyle
="--")

62
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63 ax.set_xscale("log")

64 ax.set_yscale("log")

65 ax.legend ()

66 ax.set_xlabel(r"Scale factor $a$")
67 ax.set_ylabel(r"Energy density $\rho$")
68 secax = ax.secondary_xaxis(’top’)

69 secax.set_xticks(plot_scale_factors)

70 secax.set_xticklabels(plot_temperatures_neutrino)

71 secax.set_xlabel("Neutrino Temperature [eV]")

72 fig.savefig("p4_all_densities.png",dpi=300, bbox_inches=’tight’)

73 fig.show()

74

75 """

76 Now show ratio

77 """

78 massless_case = (21/8) *(4/11) **(4/3)

79

80 fig , ax = plt.subplots ()

81

82 ax.plot(scale_factors ,sum(rho_n)/rho_g ,label=r"$\rho _{\nu} / \rho _{\gamma }

$",color="navy")
83 ax.axhline(y=massless_case ,color="rebeccapurple",linestyle="--",label="

Massless case")

84 ax.set_xscale("log")

85 ax.legend ()

86 ax.set_xlabel(r"Scale factor $a$")
87 ax.set_ylabel(r"Ratio")

88

89 secax = ax.secondary_xaxis(’top’)

90 secax.set_xticks(plot_scale_factors)

91 secax.set_xticklabels(plot_temperatures_neutrino)

92 secax.set_xlabel("Neutrino Temperature [eV]")

93 fig.savefig("p4_ratios.png",dpi=300, bbox_inches=’tight’)

94 fig.show()
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