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ASTR 425/525 Cosmology Homework 1

Problem 1 (6 points)

In class, we argued that the neutron freeze-out occurs at a temperature of Tf ≃ 0.8 MeV. This
temperature can be estimated by comparing the weak interaction rate of the neutrons with the
Hubble rate at that epoch. The interaction rate for the key reactions

p+ νe ↔ n+ e+

p+ e− ↔ n+ ve
(1)

is given by

ΓW(x) =

(
255

τn

)
12 + 6x+ x2

x5
(2)

where τn = 886.7 seconds is the neutron lifetime, and

x = Q/T (3)

Q ≡ mn −mp = 1.2933 MeV (4)

On the other hand, the Hubble expansion rate can be gotten from the Friedmann equation

H2 =
8πG

3
ρrad (5)

ρrad =
π2

30
g∗(T )T

4 (6)

Heuristically, neutron freeze-out will occur at when ΓW ∼ H. A more precise value for Tf can be
obtained by solving

ΓW(Tf) =
3

2
H(Tf) (7)

Using the expressions given above, show that Tf ≃ 0.8 MeV.

Perhaps, the easiest way to do that is to plot both ΓW(T ) and H(T ) and determine where they
intersect. Be mindful of the units to make sure you are comparing the two rates in the same unit
system. What value of g∗(T ) should you use in the above?

At the time of freeze-out, the bath of relativistic species included electrons, positrons, neutrinos, and
photons, so

g∗ = 10.75 (8)

Besides finding x by inspection, we can use a numerical root solver, since the task of finding Tf as
ΓW(Tf) =

3
2
H(Tf) is equivalent to asking at what temperature does the function

f(x) = ΓW(Tf)−
3

2
H(Tf) (9)

attain a value of zero. Here’s one approach for units:

• Keep τn in seconds, so that ΓW is in s−1.

• Write ρ as

ρ =
π2

30
g∗
Q4

x4
(10)
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so that if Q is in MeV then ρ is in MeV4.

• Compute Hubble using the reduced Planck mass (which we write in MeV, see Baumann eq. 3.2
for more details)

MPl =

√
ℏc
8πG

= 2.4× 1021 MeV (11)

So that

H(x) =

√
ρ(x)

3M2
Pl

(12)

• The Hubble rate above is in MeV. To convert to s−1, we use the fact that

ℏ = 6.582× 10−22 MeV · s (13)

The code below numerically finds the root of f(x), as and produces a plot for visual confirmation.

1 import numpy as np

2 from scipy.optimize import fsolve

3 import matplotlib.pyplot as plt

4

5 # Constants

6 tau_n = 886.7 # neutron lifetime in seconds

7 Q = 1.2933 # MeV

8 M_Pl_red = 2.4e21 # Reduced Planck mass in MeV

9 g_star = 10.75

10 hbar = 6.582e-22 # MeV*s

11

12 def Gamma(x): # (in s^-1)

13 return (255/ tau_n) * (12 + 6*x + x**2)/(x**5)

14

15 def H(x): # (in s^-1)

16 rho = (np.pi**2 / 30) * g_star * (Q**4 / x**4)

17 H_MeV = np.sqrt(rho / (3 * M_Pl_red **2)) # MeV

18 return H_MeV / hbar # s^-1

19

20 # Finding when Gamma = (3/2)H is the same as

21 # when Gamma - (3/2)H=0

22 def f(x): # where x=Q/T, so we still need to find T once we find x.

23 return Gamma(x) - 1.5 * H(x)

24 # We will use scipy to numerically find the zero of this function.

25

26 # Scipy ’s fsolve needs an initial guess. Most numbers work , but we know

27 # we should expect something around x = Q/0.8 MeV ~ 1.6

28 initial_guess = 1.6

29 x_f = fsolve(f, initial_guess)[0]

30

31 T_f = Q / x_f

32 print(f" Zero found at x = {x_f:.5f}")

33 print(f"Corresponding to T_f = {T_f:.5f} MeV")

34

35 x_values = np.linspace (1 ,2 ,100)

36 Gammas = [Gamma(xx) for xx in x_values]

37 Hs = [1.5*H(xx) for xx in x_values]

38
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39 plt.plot(x_values , Gammas , color="red",label=r"$G_W(x)$")
40 plt.plot(x_values , Hs , color="blue",label=r"$1.5 H(x)$")
41 plt.axvline(x=x_f ,color="green",linestyle="--")

42 plt.xlabel(r"$x=Q/T$")
43 plt.ylabel(r"[$s^{-1}$]")
44 plt.legend(loc="upper right")

45

46 plt.savefig("Q1_plot.png",dpi=300, bbox_inches=’tight’)

Results follow:

Zero found at x = 1.58902

Corresponding to T f = 0.81390 MeV
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Problem 2 (6 points)

In class, we mentioned several times that the age of the Universe was about 1 second when
neutrons froze out at Tf = 0.8 MeV. Let us derive this result. First, remember that the age of
the universe at scale factor a is given (exactly) by

t(a) =

� a

0

da′

a′H(a′)
(14)

The issue is that we don’t know H(a) but instead we know H(T ):

H(T ) =

√
8πG

3
ρrad(T )

ρrad(T ) =
π2

30
g∗(T )T

4

(15)

To make matters worse, T does not scale as 1/a when g∗ (or g∗S) is changing. However, we
can derive an approximate expression that is pretty accurate by taking g∗(T ) to be constant and
T ∝ 1/a.

a) Show that if T ∝ 1/a, then
dT

T
= −da

a
(16)

b) Using the above and assuming g∗(T ) to be constant, show that the age of the universe at
temperature T was

t

sec
≃ 2.42

√
g∗

(
T

MeV

)−2

(17)

c) Using the appropriate value for g∗ for T ∼ 1 MeV, show that the age of the Universe at
Tf = 0.8 MeV was t1.15 seconds.

a) Let k be the constant of proportionality: T = k/a, then

dT = − k

a2
da

dT = −k

a
· da
a

dT = −T
da

a
dT

T
= −da

a

(18)

b) Note that k is, effectively, a normalization constant. As such, we can absorb it/set it to 1.
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Observe that we can rewrite Eq. 14 as

t = −
� 1/a

∞

dT ′

T ′H(T ′)

= −
� 1/a

∞

dT ′

π
√
g∗

MPl,red

√
90
T ′3

=
MPl,red

√
90

π
√
g∗

a2

2

=
MPl,red

√
90

π
√
g∗

1

2T 2
MeV−1

=
MPl,redℏ

√
90

π
√
g∗

1

2T 2
seconds

(19)

Consider a direct computation of the prefactor:

√
90

2π
MPl,redℏ =

√
90

2π

(
2.43× 1021 MeV

)(
6.582× 10−22 MeV · s

)
= 2.4199 ≃ 2.42

(20)

So (observing that this formula only works if we feed T in MeV)

t

sec
≃ 2.42

√
g∗

(
T

MeV

)−2

(21)

c) At 1 MeV, g∗ = 10.75, so

t =
2.42√
10.75

(0.8)−2 seconds

= 1.153 seconds
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Problem 3 (3 points)

Use the Saha equation for the free electron fraction Xe,(
1−Xe

X2
e

)
eq

=
2ζ(3)

π2
ηb

(
2πT

me

)3/2

eBH/T (22)

to show that the temperature of the universe when 90% of the electrons have combined with
protons to form neutral atoms (that is, Xe = 0.1) is Trec ≃ 0.3 eV. Why is Trec ≪ BH = 13.6 eV?

We can find Trec numerically by finding the location of the root of1

f(T ) =
1− 0.1

0.12
− 2ζ(3)

π2
ηb

(
2πT

me

)3/2

eBH/T (23)

We find that
T rec = 0.29610 eV

using the following code:

1 import numpy as np

2 from scipy.optimize import fsolve

3

4 # Constants

5 zeta_three = 1.20206

6 eta_b = 6.0e-10

7 mass_e = 5.11e5 # eV

8 B_H = 13.6 # eV

9

10 def Saha_LHS(X_e):

11 return (1-X_e)/(X_e **2)

12

13 def Saha_RHS(T):

14 return 2* zeta_three * eta_b * (2*np.pi*T/mass_e)**(3/2)*np.exp(B_H/T) / (np.

pi**2)

15

16 # Finding when T when X_e = 0.1

17 def f(T):

18 return Saha_LHS (0.1) - Saha_RHS(T)

19 # We will use scipy to numerically find the zero of this function.

20

21 # Scipy ’s fsolve needs an initial guess. Most numbers work , but we know

22 # we should expect something around T ~ 0.3 eV

23 initial_guess = 0.3

24 T_rec = fsolve(f, initial_guess)[0]

25

26 print(f"T_rec = {T_rec :.5f} eV")

To see why Tred ≪ BH = 13.6 eV, we must recall that this temperature does not dictate the exact
energy of photons, but rather their energetic distribution. At T = 13.6 eV, the universe still has
sufficiently energetic photons that are capable of ionizing Hydrogen. By dropping the temperature,
we are suppressing this tail in the photon distribution, hence the smaller value for Trec.

1Where the constants are me = 5.11× 105 eV, ηb = 6× 10−10, BH = 13.6 eV.
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Problem 4 (3 points)

Even in the absence of recombination (that is, Xe = ne/(np + nH) = 1 at all times), the photons
populating the our Universe would eventually decouple from the baryons anyway due to the vol-
umetric dilution from the expansion.

Estimate the temperature and redshift at which photon decoupling would occur in a Universe
that is always ionized. Use

H0 = 2.133h× 10−33 eV (24)

h = 0.674 (25)

Ωm = 0.315 (26)

ηb = 6.1× 10−10 (27)

σT = 1.71× 10−3 MeV−2 (28)

The process that’s keeping photons and electrons coupled is Thomson scattering

e− + γ → e− + γ (29)

With interaction rate
Γ = neσT (30)

(where σT , the Thomson cross section, is given above). Decoupling occurs when the interaction rate
becomes smaller than the expansion rate H of the universe, so Tdec is the temperature that satisfies

Γ(Tdec) ∼ H(Tdec) (31)

We start by rewriting Γ using the fact that ne = nbXe and the assumption that Xe = 1:

Γ = neσT

= nb��XeσT

= ηnγσT

= η
2ζ(3)

π2
σTT

3

(32)

Giving us an expression for Γ that depends only on T and known constants. Similarly with the Hubble
rate H:

H = H0

√
Ωma−3

= H0

√
Ωm

(
T

T0

)3/2 (33)

Where we assume a matter-dominated universe. We can analytically solve for T :

η
2ζ(3)

π2
σTT

3 = H0

√
Ωm

(
T

T0

)3/2

Tdec =

(
π2H0

√
Ωm

2ζ(3)ησTT
3/2
0

)2/3

= 9.19× 10−9 MeV

(34)
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And redshift

T = (1 + z)T0

1 + z =
T

T0

zdec =
T

T0

− 1

= 38.1214

(35)

A much later time compared to the standard zdec ∼ 1090.
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