ASTR 425/525 Cosmology

Luminosity Distance
(Dated: September 22, 2025)

I. KEY DISTANCES THAT ARE OBSERVABLE
A. Angular diameter distance

Last time, we derived the angular diameter distance dp = [/6, which allows one to relate the apparent angular size
f of an object on the sky to its physical size [. It is given by

T sinh (VQx Hox)  if Qx> 0,
da = aSk(x) = < ax if Qg =0, (1)
msm(\/WHox) if Qx < 0.

where the comoving distance x is given by

1 da’ z(a) dz'
o= | www ), e <2>

In the spatially flat case (2x = 0), the angular diameter distance is simply a rescaled version of the comoving distance

2 (2) = ax(z) = 12 )

As we discussed in class, the angular diameter distance measures how far an object was from us at the time that the
light we see today was emitted by that object.

B. Luminosity distance

Another very important way to infer distances in cosmology is to measure the flux from an object of known
luminosity. In flat Euclidean space, the observed flux F' a distance d from a source of known luminosity L is

L
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Here, L has units of energy per unit time, while F' has units of energy per unit time per unit area. In analogy to the
above, we define the luminosity distance di, in an expanding universe as
L
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where L is the absolute luminosity of the source and F' is the observed flux. The challenge is then to relate the flux F

to the absolute luminosity in an expanding Universe. Imagine the source emits dN, photons in a small time interval
dtem centered on time tep,, each with energy E er,. The absolute luminosity of the source can then be written as

dN,
dtom
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L=L(tem) = Eyem- (6)
These photons will then propagate outward in a thin comoving shell surrounding the source. As they do so, the
number of photons is conserved, but the total luminosity that any distant observer would infer will not equal L. To
see this, consider an observer at time t,ps > tem. This observer infers a total luminosity given by

dN.
L(tobs) = ﬁE’y,obs- (7)

where F obs is the energy of the observed photons. Since photons travel on null paths, we have

af(tobs)

ey dtem: (8)

dtons = a(tobs)dx =




Also, photons lose energy due to the expansion and we have
E’y,obs = E’y,emi

Putting all of this together, we have

L(tun) = (a(tmo > ANy g (a(tc@ ) . 10)

a (tobs) dtem

If the observation occurs today with a(tg) = 1, this reduces to

L(to) = a(tem)*L. (11)
Since the comoving area of a sphere surrounding the source is 47S7(x(a(tem))), the observed flux today is

_ L(to) ~aftem)?L
r= ArSE(x(altem))  4mSE(x(altem)))” (12)

Substituting this in the definition of the luminosity distance, we obtain

S
dp(a) = M. (13)
a
In general, we thus have following relationship between luminosity and angular diameter distance
da (a)
() = 2, (14
or in terms of redshift

d(2) = (14 2)%da(2). (15)

Astronomers like to use magnitudes to describe flux and luminosity. The absolute luminosity is defined as the log of
the flux that would be measured if an object was 10 pc away.

= —2.5logy (F(10pc)) + C, (16)

where the leading factor of —2.5 is a convention and the constant C' is used to set the reference point of the magnitude
system. Conversely, the apparent magnitude is the log of the measured flux

m = —2.5log,q (F) + C. (17)

Going back to the definition of the luminosity distance, we can write

di \? L
L) = , (18)
10pc 4w (10 pc)?F

and note that F(10pc) = L/(47(10pc)?). Taking a log;, on both sides and multiplying by —2.5.

di, L
—5logyq (10}3C> = —2.5logyg (477(1()pc)2) + 2.51ogqo (F)

—u=M-m

where p is the distance modulus, which is defined as

dL dL
=51 —— | =51 —_— 25. 2
p = 5logyg <10pc> 5 logyg (Mpc) +25 (20)

Thus, if you happen to know the absolute luminosity M of a given type of objects, you can use observations of
their apparent luminosities to measure the luminosity distances to these objects. Then by comparing these measured
distances to their theoretical predictions (see Eq. (13)) above, one can infer useful information about cosmological
parameters (e.g. Ho, Oy, etc.).



