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I. THE FRIEDMANN EQUATION

We have argued that the cosmological principle leads to the Friedmann-Lemâıtre-Robertson-Walker metric, which
in its spatially flat version (and written in cartesian coordinates) takes the form

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (1)

where a(t) is the scale factor. We would now like to compute the evolution of the scale factor a(t). This technically
requires General Relativity, which fundamentally relates the energy content of the Universe to its geometry and
evolution. However, it turns out that a calculation based on Newtonian mechanics leads to essentially the same
result, so we will follow that route instead.

A key element of Newtonian gravity is that the gravitational field (or acceleration) g obeys Gauss’s law: If I
integrate g over a closed surface S, the gravitational “flux” going through the surface depends only on the mass
enclosed within this surface Menc, or mathematically∮

S

g · da = −4πGMenc. (2)

This is, of course, very similar to Gauss’s law for the electric field, and is ultimately the consequence of both fields
obeying a 1/r2 law. Note that the result above doesn’t depend on the details of the surface S, as long at encloses
the same mass Menc. For example, the gravitational field (or acceleration) a distance r away from a point mass M
located at the origin is

g = −GM
r2

r̂, (3)

and using a sphere of radius R as the surface S (da = R2dΩr̂, with dΩ = sin θdθdφ), we obtain

∮
S

g · da = −
∫
GM

R2
r̂ ·R2dΩr̂

= −GM
∫
dΩ

= −4πGM, (4)

which verifies the above as M is the only mass enclosed in this case. Since any finite mass distribution can be built
by adding together point masses, the above can be generalized to arbitrary mass distributions. In particular, consider
a universe filled with a uniform matter density ρ(t). Pick an arbitrary origin in this universe (since it is assumed to
be homogeneous, all choices of origin must be equivalent, and our final answer will not depend on this choice), and
consider a test mass m a distance r away from that origin. Since the gravitational field obeys Gauss’s law, only the
mass contained within the sphere of radius r surrounding the origin can exert a force on the test mass m. This mass
is simply

M(t) =

∫
ρ(t)d3r =

4πr3ρ(t)

3
, (5)

since the matter density ρ(t) is uniform in space.
To get the evolution of the scale factor a(t), we will examine the evolution of the energy of the test particle m. This

particle has both gravitational potential energy and kinetic energy. Remembering that the gravitational potential Φ
is related to the gravitational field by g = −∇Φ, the gravitational potential at the location of the mass m is simply

Φ(t) = −GM(t)

r
= −4πGr2ρ(t)

3
. (6)
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Since the gravitational potential is the potential energy per unit mass, the potential energy V of the particle m is
then simply

V = −4πGr2ρ(t)m

3
. (7)

Meanwhile, the kinetic energy of the particle m is

T =
1

2
m

(
dr

dt

)2

. (8)

Then, the total energy U of this particle is then

U = T + V =
1

2
m

(
dr

dt

)2

− 4πGr2ρ(t)m

3
. (9)

Here, r is a physical distance between the origin and the mass m. We now introduce comoving coordinates rcom

r = a(t)rcom, (10)

such that

dr

dt
≡ ṙ = ȧrcom. (11)

The total energy is then

U =
1

2
mȧ2r2com −

4πGa2r2comρ(t)m

3
. (12)

Dividing both sides by a2r2comm/2, we get (
ȧ

a

)2

= H2 =
8πG

3
ρ(t)− k

a2
, (13)

where we have defined k = − 2U
r2comm

. Here, k is a constant with units of [length]−2 whose physical meaning is a little

mysterious at this point. As we will soon see, this constant is related to the spatial geometry of the Universe. It turns
out that setting k = 0 correspond to having the flat FLRW metric given in Eq. (1) above.

Equation (13) is called the Friedmann equation. It is one of the most important equations in all of cosmology.
It relates the energy density of the Universe to the behavior of the scale factor, such that universes dominated by
different kind of energy (matter, radiation, dark energy) will behave differently. To solve the Friedmann equation, we
generally need to know the how ρ(t) changes with time, that is, we need an evolution equation for ρ(t) to close this
system of equations. Last time, we derived the continuity equation governing the evolution of ρ(t) so we can now
solve for the scale factor.

II. CURVATURE

As we mentioned above, the constant k has units of [length]−2. What is the length scale appearing here? To clarify
this, it is useful to write k ≡ κ/R2, where κ = {−1, 0, 1}, and R is a constant with units of [length]. To obey the
cosmological principle, this length scale has to be the same at every point in spacetime. There is only one possibility:
R stands for the global spatial curvature. That is, at any instant in time, the Universe as a whole can be a manifold
(3D surface) with a constant curvature. There are only 3 possibilities for such a manifold (corresponding of course
to κ = {−1, 0, 1}): a flat Euclidean manifold (κ = 0, or equivalently R → ∞), a spherical manifold (κ = 1), and an
hyperbolic manifold (κ = −1).

So far, we only have dealt with the spatially flat FLRW metric (which corresponds to κ = 0). How does the metric
change when κ 6= 0? It actually takes the very simple form

ds2 = −dt2 + a2(t)

[
dr2

1− κ(r/R)2
+ r2(dθ2 + sin2 θdφ2)

]
. (14)
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For r/R� 1, this reduces to the standard flat case, showing that the curvature only starts mattering once r ∼ R. It
is informative to introduce a new radial coordinate χ via

dχ ≡ dr√
1− κ(r/R)2

. (15)

Using integration, this definition can be inverted for r. Defining u = r/R, we can write

χ = R

∫ r/R

0

du√
1− κu2

=


R sinh−1 (r/R) if κ = −1,

r if κ = 0,

R sin−1 (r/R) if κ = +1.

(16)

Inverting these relations, we obtain

r =


R sinh (χ/R) if κ = −1,

χ if κ = 0,

R sin (χ/R) if κ = +1.

(17)

Sometime, we use the above relations to write the FLRW metric as

ds2 = −dt2 + a2(t)
[
dχ2 + S2

κ(χ)(dθ2 + sin2 θdφ2)
]
. (18)

with

Sκ(χ) =


R sinh (χ/R) if κ = −1,

χ if κ = 0,

R sin (χ/R) if κ = +1.

(19)

III. GEOMETRIES

Let’s now consider the three geometries in turn:

• Flat (Euclidean) geometry (κ = 0): In this case, the metric is that given in Eq. (1) above. This geometry
is characterized by:

1. The inner angles of a triangle add up to π.

2. The circumference of a circle of radius r is 2πr.

3. Two lines that are initially parallel will stay parallel forever.

• Closed (spherical) geometry (κ = +1): In this case, the metric takes the form

ds2 = −dt2 + a2(t)
[
dχ2 +R2 sin2 (χ/R)dΩ2

]
, (20)

where dΩ2 = dθ2 + sin2 θdφ2. Defining q ≡ χ/R, this can be rewritten as

ds2 = −dt2 + a2(t)R2
[
dq2 + sin2 qdΩ2

]
, (21)

whose spatial part is the metric of a three-sphere of radius a(t)R. Since it is difficult to visualize a three-sphere,
let’s focus on its equatorial plane by setting θ = π/2. At a fixed coordinate time t, we then have

ds2 = (aR)2(dq2 + sin2 qdφ2), (22)

which the familiar metric of a two-sphere of radius aR. We can then think of q as the ”polar” angle of this
sphere. Drawing a circle on this sphere at a constant polar angle q, the radius of this circle (as measured along
the surface of the sphere) is r = aRq. However, the circumference of this circle is 2πaR sin q < 2πr. This is not
Euclidean geometry, and this space is said to be (positively) curved, with radius of curvature R.

Looking at Eq. (20), we see that when χ� R, the metric appears appears approximately flat sinceR2 sin2 (χ/R)→
χ2 in this case. Only when χ becomes a sizable fraction of the radius of curvature R that we start “feeling” the
curvature. This makes sense for us living on Earth: we don’t really see that the Earth is roughly round in our
everyday lives since we only see a very small area of it at any given time. But if you go to space and see the
whole planet at once, it is easy to see it is roughly a sphere.

In cosmology, we refer to this case with positive curvature as an closed universe, since at any given time, the
Universe is a giant three-sphere and thus have a finite volume. This geometry is is characterized by:
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1. The inner angles of a triangle add up to more than π.

2. The circumference of a circle of radius r is less than 2πr.

3. Two lines that are initially parallel will eventually converge.

• Open (hyperbolic) geometry (κ = −1): In this case, the metric takes the form

ds2 = −dt2 + a2(t)
[
dχ2 +R2 sinh2 (χ/R)dΩ2

]
, (23)

where dΩ2 = dθ2+sin2 θdφ2. The spatial part of this metric represents a three-dimensional hyperboloid (saddle)
with constant negative curvature −R. Much of our discussion for the spherical case applies here, except with
the substitution sin → sinh. In particular, the circumference of a circle of radius r = aRq (as measured along
the saddle; q = χ/R as before) is 2πaR sinh q > 2πr.

In cosmology, we refer to this case with negative curvature as an open universe, since at any given time, the
Universe is infinite. This geometry is is characterized by:

1. The inner angles of a triangle add up to less than π.

2. The circumference of a circle of radius r is more than 2πr.

3. Two lines that are initially parallel always diverge from each other.


