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I. INFLATION AS A SOLUTION TO THE HORIZON AND FLATNESS PROBLEMS

Last time, we discussed the horizon and flatness problems of the hot Big Bang model.

1. Horizon: Two points on the CMB sky separated by more than ∼ 1 degree cannot have been in causal contact
in the past, yet these CMB photons have the same temperature to a very good approximation.

2. Flatness: The deviation from flatness at any given time t can be written as

|Ωtot(t)− 1| = |k|
a2H2

, with Ωtot(t) =
8πGρtot(t)

3H2(t)
. (1)

Since H2 ∝ a−4 in radiation domination and H2 ∝ a−3 in matter domination, the right-hand side is always a
growing function of the scale factor when |k| 6= 0. Yet, we measure today that |Ωtot(t0) − 1| < 0.001, which
means that |k|/H2 must have been extremely small at early times.

Both of these problems can be solved by postulating a brief period of inflation, a period of accelerated expansion
with ä(t) > 0. As we saw last time, this requires negative pressure P < −ρ/3. Possibly, the simplest way of achieving
this is to have the Universe dominated by a constant energy density which doesn’t dilute with the expansion. Such
model has P = −ρ and the scale factor for such model is simply

a(t) ∝ eHIt, (2)

where HI is the Hubble expansion rate during inflation, which is a constant (since the energy density is a constant).
Such exponential expansion can stretch the causal horizon so much that all parts of the CMB last-scattering surface
were in causal contact in the past. This is illustrate in Fig. 1 below.
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Figure 6.5. Inflationary solution to the horizon problem. Larger cone shows the true horizon in 
an inflationary model; smaller inner cone shows the horizon without inflation. During inflation, 
the physical horizon blows up very rapidly. All scales in the shaded region were once in causal 
contact so it is not surprising that the temperature is uniform. 

f' dt' 
(6.20) 

so that the total comoving horizon is r]prim-hT]- This is the convention we will follow; 
note that this means that during inflation, rj is negative, but always monotonically 
increasing. A scale leaves the horizon in the sense of Figure 6.4 when k\r]\ becomes 
less than 1, and returns at late times when krj becomes larger than 1. 

To sum up, inflation — an epoch in which the universe accelerates — solves the 
horizon problem. During the accelerated expansion the physical Hubble radius 
remains fixed, so particles initially in causal contact with one another can no longer 
communicate. Regions which are separated by vast distances today were actually 
in causal contact before and during inflation. At that time, these regions were given 
the necessary initial conditions, the smoothness we observe today, but also, as we 
will soon see, the small perturbations about smoothness that eventually grew into 
galaxies and other structure in the universe. 

FIG. 1. Inflationary solution to the horizon problem. Larger cone shows the true horizon in an inflationary model; smaller
inner cone shows the horizon without inflation. During inflation, the physical horizon blows up very rapidly. All scales in the
shaded region were once in causal contact so it is not surprising that the temperature is uniform. Figure from Dodelson (2003).
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Concerning the flatness problem, a period with HI ∼ constant and a(t) ∝ eHIt leads to

|Ωtot(t)− 1| ∝ e−2HIt, (3)

that is, the difference from flatness decays exponentially fast during inflation. This sets its initial value so small that
all the subsequent expansion of the Universe cannot really make it big again. This solves the fine-tuning problem.
Another way to think about this is that inflation makes the entire Universe so large that it’s not a surprise that today
the radius of curvature of the Universe is R� H−1

0 .

II. SIMPLE MODELS OF INFLATION

The simplest models of inflation involves scalar fields. A scalar field is simply a function of space and time φ(r, t).
We call them “scalar” since they are basically just numbers at every point in spacetime, as opposed to, say, a vector
field (like the electric or magnetic fields) which is a vector at every point in spacetime. Just like electric fields, scalar
fields can carry energy and momentum and have dynamical evolution. In particular, the energy density in a scalar
field φ(r, t) is

ρφ =
1

2
φ̇2 + V (φ), (4)

where φ̇ = dφ/dt. The first term represents the kinetic energy of the field, while V (φ) is the potential energy of the
field. Meanwhile, the pressure of a scalar field is

Pφ =
1

2
φ̇2 − V (φ). (5)

This means that if the energy of the field is dominated by the potential energy, the equation of state of the scalar
field would be

wφ =
Pφ
ρφ
≈ −V (φ)

V (φ)
= −1, (6)

that is, this field is behaving approximately like a cosmological constant and can thus drive inflation. This is the basis
for a lot of the inflation literature: it needs a field that moves slowly (“slow-roll”) such that V (φ)� φ̇2.
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Figure 6.6. A scalar field trapped in a false vacuum. Since it is trapped, it has little kinetic 
energy. The potential energy is nonzero, however, so the pressure is negative. The global 
minimum of the potential is called the true vacuum, since a homogeneous field sitting at the 
global minimum of the potential is in the ground state of the system. 

There is something important to notice about a field trapped in a false vacuum, 
bmce is constant, its energy density, which is all potential, remains constant 
with time. Constant energy density is much different than anything with which we 
are familiar. The densities of both matter and radiation, for example, fall off very 
rapidly as the universe expands. Therefore, even if the universe initially contains 
a mixture of matter, radiation, and false vacuum energy, it will quickly become 
dominated by the vacuum energy. For a trapped field, it is trivial to determine 
the evolution of the scale factor. Since the energy density is constant, Einstein's 
equation for the evolution of a is 

da/dt SnGp 
constant. (6.28) 

We immediately see that a field trapped in a false vacuum produces exponential 
expansion as in Eq. (6.19), with H oc p^/^ constant. The primordial comoving 
horizon, that generated before the end of inflation, is then obtained by integrating 
the inverse of Eq. (6.19) over time. 

^PH. = j ^ (e^(*-*^) - l ) (6.29) 

where 4 is the beginning of inflation. So if the field is trapped for at least 60 
e-foldings {H{te — h) > 60), the horizon problem is solved. 

FIG. 2. A scalar field trapped in a false vacuum. Since it is trapped, it has little kinetic energy. The potential energy is nonzero,
however, so the pressure is negative. The global minimum of the potential is called the true vacuum, since a homogeneous field
sitting at the global minimum of the potential is in the ground state of the system. Figure from Dodelson (2003).
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A. Old Inflation

The original idea for inflation by Guth in 1981 was that a scalar field could get trapped in a “false vacuum”,
essentially a local minimum in the potential function V (φ) at field position φFV. The picture is that the very early
Universe was extremely hot, and the scalar field had a lot of kinetic energy and was bouncing around its potential.
As the Universe expanded and cooled, the scalar could get trapped in the false vacuum state instead of relaxing to
the true vacuum state (see Fig. 2). Essentially, the Universe gets supercooled, that is, it is left in a metastable state
that has more energy than the “natural” lowest energy state.

When this happens, we have φ̇ ∼ 0, and if V (φFV) > 0, then the regions of the Universe where the field is trapped
in the false vacuum will start inflating. These inflating regions will rapidly become exponentially larger than the
region of the Universe in the true vacuum, and so start dominating the volume of the entire Universe. However,
quantum mechanics tells us that there is nonzero probability for the scalar field to tunnel through the barrier to get
to the true vacuum. Essentially, within the inflating region of false vacuum, bubbles of true vacuum will nucleate (a
phase transition). Once a bubble has formed, its size expands at the speed of light. Inside the bubble, space is no
longer inflating if V = 0 at the true vacuum. However, the space outside the bubble is still inflating and basically
this process dilutes the true-vacuum bubbles faster then they can coalesce with each other. So inflation never really
stops in this scenario: it has a “graceful exit” problem. This was realized very quickly after Guth’s proposal, and this
is why this scenario has been dubbed “old inflation”. At nearly the same, Starobinsky in the Soviet Union proposed
a model of inflation based on modified gravity, which to this day is still allowed by the data.

B. New/Chaotic Inflation
32 2. Inflation

Figure 2.4: Example of a slow-roll potential. Inflation occurs in the shaded parts of the potential.

The stress-energy tensor of the scalar field is

Tµ⌫ = @µ�@⌫�� gµ⌫

✓
1

2
g↵�@↵�@��� V (�)

◆
. (2.3.21)

Consistency with the symmetries of the FRW spacetime requires that the background value of

the inflaton only depends on time, � = �(t). From the time-time component T 0
0 = ⇢�, we infer

that

⇢� =
1

2
�̇2 + V (�) . (2.3.22)

We see that the total energy density, ⇢�, is simply the sum of the kinetic energy density, 1
2 �̇

2,

and the potential energy density, V (�). From the space-space component T i
j = �P� �

i
j , we find

that the pressure is the di↵erence of kinetic and potential energy densities,

P� =
1

2
�̇2 � V (�) . (2.3.23)

We see that a field configuration leads to inflation, P� < �1
3⇢�, if the potential energy dominates

over the kinetic energy.

Next, we look in more detail at the evolution of the inflaton �(t) and the FRW scale factor

a(t). Substituting ⇢� from (2.3.22) into the Friedmann equation, H2 = ⇢�/(3M2
pl), we get

H2 =
1

3M2
pl


1

2
�̇2 + V

�
. (2.3.24)

Taking a time derivative, we find

2HḢ =
1

3M2
pl

h
�̇�̈ + V 0�̇

i
, (2.3.25)

where V 0 ⌘ dV/d�. Substituting ⇢� and P� into the second Friedmann equation (2.2.16),

Ḣ = �(⇢� + P�)/(2M2
pl), we get

Ḣ = �1

2

�̇2

M2
pl

. (2.3.26)

Notice that Ḣ is sourced by the kinetic energy density. Combining (2.3.26) with (2.3.25) leads

to the Klein-Gordon equation

�̈ + 3H�̇ + V 0 = 0 . (2.3.27)

This is the evolution equation for the scalar field. Notice that the potential acts like a force, V 0,
while the expansion of the universe adds friction, H�̇.

FIG. 3. Example of a slow-roll potential. Inflation occurs in the shaded parts of the potential. Figure from Baumann (2022).

A better model of inflation is gotten by taking a simple quadratic potential

V (φ) =
1

2
m2φ2, (7)

where m is the mass of the scalar field. This model was proposed by Linde in 1982 in the Soviet Union, and a
similar idea was brought forward by Albrecht and Steinhardt in the US. The nice thing about this potential is that,
in Minkowski space, the equation of motion for the scalar field is

φ̈+m2φ = 0, (8)

that is, the equation of an harmonic oscillator. In this case we immediately know the dynamic of the scalar field: it
will oscillate around the bottom of the potential with a frequency given by the mass m. Of course, in cosmology we
are not in Minkowski spacetime but in an expanding FLRW Universe. It turns out that the expansion of the Universe
turns the above equation into a damped harmonic oscillator equation

φ̈+ 3Hφ̇+m2φ = 0, (9)

where H is the Hubble rate. This Hubble damping term is key for inflation since when H � m, the system is
overdamped and the field get stuck somewhere on the potential at V (φ) > 0. Neglecting the m2φ term in this limit,
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the only physical solution to φ̈ + 3Hφ̇ ' 0 is φ = constant. Since the field is not moving moving much (the field is
stuck) and is at V (φ) > 0, inflation can start.

However, φ̇ is not exactly zero and the Hubble rate during inflation is not exactly constant, and in fact slowly
decreases. This process is called slow roll. Slow-roll inflation is usually characterized via the slow-roll parameter

ε ≡ − Ḣ

H2
, (10)

with ε � 1 for slow-roll inflation to occur. While we initially have H � m, the fact that ε 6= 0 means that H is
slowly decreasing and we eventually reach the point H ∼ m. At that time, the Hubble damping is no longer effective
and the field can start oscillating around the minimum of the potential, at which point inflation stops. So this model
does not suffer from a graceful exit problem. Once H � m, one can forget about the Hubble friction term, and the
equation of motion for the field is simply that of an harmonic oscillator

φ̈+m2φ ≈ 0, (11)

which has for solution φ ∼ cos (mt) and φ ∼ sin (mt). For such harmonic motion, the pressure averaged over one
oscillation cycle (period) vanishes

〈Pφ〉 =
1

2
〈φ̇2〉 − 1

2
m2〈φ2〉 ≈ 0, (12)

since

〈φ2〉 =
φ20
T

∫ T

0

dt cos2 (mt) =
φ20
2
, (13)

and

〈φ̇2〉 =
φ20m

2

T

∫ T

0

dt sin2 (mt) =
φ20m

2

2
, (14)

where the period is T = 2π/m, and φ0 is the initial amplitude of the scalar field when it starts oscillating. Thus, an
oscillating scalar field in an harmonic potential has zero pressure on average and thus behaves like non-relativistic
matter. In the above, we assumed that the amplitude of oscillation stays constant. This is a pretty good approximation
over one oscillation, but in the long run the amplitude of oscillation does decrease. We know this because non-
relativistic matter always dilutes as ρφ ∝ a−3, and we have

〈ρφ〉 =
1

2
〈φ̇2〉+

1

2
m2〈φ2〉 ≈ 1

2
m2φ20 ∝ a−3, (15)

which implies that φ0 ∝ a−3/2. As the field oscillates with this decreasing amplitude, to reheat the Universe: as the
field oscillates at the bottom of the potential, it can dump its energy to Standard Model particles.


