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I. NUMBER DENSITY, ENERGY DENSITY, AND PRESSURE

A reminder that the key expression for number density n, energy density ρ, and Pressure P are given by

n(T ) = g

∫
d3p

(2π)3
f(p, T ), (1)

ρ(T ) = g

∫
d3p

(2π)3
f(p, T )E(p), (2)

P (T ) = g

∫
d3p

(2π)3
f(p, T )

p2

3E(p)
, (3)

respectively. Here, f(p, T ) is the particle distribution function as a function of momentum p and temperature T , and
g is the number of internal degrees of freedom.

If a particle species is in kinetic equilibrium (i.e. particles are able to efficiently exchange energy and momentum),
then the particle distribution function takes either a Fermi-Dirac or Bose-Einstein form

f(p, T ) =
1

e(E(p)−µ)/T ± 1
, (4)

where the + sign is for fermions (half-integer spin) and the − sign for bosons (integer spin). Here, µ is the chemical
potential.

II. NON-RELATIVISTIC LIMIT

A. Number density

Let’s consider the number density in the non-relativistic limit for a particle species of mass m. Starting with the

relativistic expression for the energy E(p) =
√
p2 +m2, we can Taylor expand to get

E(p) ≈ m+
p2

2m
+ . . . (5)

in the nonrelativistic limit m � p. Using this expression for E, the number density for non-relativistic particles
(m� T ) in thermal equilibrium is given by

nNR ≈ g
∫

d3p

(2π)3
1

e(m+p2/2m−µ)/T ± 1

≈ g

2π2
e−(m−µ)/T

∫ ∞
0

dp p2e−p
2/(2mT )

=
g

2π2
e−(m−µ)/T (2mT )3/2

∫ ∞
0

dxx2e−x
2

, (6)

where we have used the substitution x = p/
√

2mT . We can now use the following result∫ ∞
0

dxxne−x
2

=
1

2
Γ

(
1

2
(n+ 1)

)
, (7)

where Γ(z) is the gamma function. Also note that Γ(3/2) =
√
π/2. Putting everything together, we get

nNR(T ) = g

(
mT

2π

)3/2

e−(m−µ)/T . (8)

Without chemical potential µ, the above means that the abundance of particles are exponentially suppressed once
T � m.
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B. Energy density

Non-relativistic particles are dominated by their rest-mass energy E ≈ m. Using this leading approximation, the
energy density for a species of non-relativistic particles is

ρNR(T ) ≈ g
∫

d3p

(2π)3
f(p, T )m = m

(
g

∫
d3p

(2π)3
f(p, T )

)
= mnNR(T ). (9)

That is, for non-relativistic particles, the leading contribution to the energy density is simply their mass times their
number density. In our Universe, this result is very relevant to the baryonic and dark matter densities. If we were to
keep the kinetic energy contribution to the energy (second term in Eq. (5)), we would then have

ρNR ≈ g
∫
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(2π)3
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= mn+
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∫ ∞
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∫ ∞
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]
4T√
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2
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= mn+
3

2
nT, (10)

where we have used Γ(5/2) = 3
√
π/4. We thus retrieve the standard result that each particle has a typical kinetic

energy of (3/2)T (remember that we have set kB = 1 here). Since non-relativistic particles have m � T the second
term is generally extremely subdominant compared the rest-mass contribution.

C. Pressure

As we have already discussed, the pressure of non-relativistic particles is generally vanishingly small in a cosmological
context. We can now quantify this statement more thoroughly. The leading order contribution to the pressure is
given by

PNR ≈ g
∫
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(2π)3
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]
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which is simply the familiar PV = NkBT ideal gas law. For m � T , this pressure is indeed much smaller than the
energy density from the rest mass of the particles. The equation of state for non-relativistic particle is then, at leading
order,

w =
PNR

ρNR
≈ T

m
� 1, (12)

indeed indicating that w ≈ 0 for non-relativistic matter is an excellent approximation.


