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I. NUMBER DENSITY, ENERGY DENSITY, AND PRESSURE

Last time, we introduced the particle distribution function (or phase-space density) f(x,p, t) describing the occu-
pancy of different position and momentum eigenstates. We then used the Cosmological Principle to argue that the
phase space density must be independent of position and cannot depend on the direction of the momentum p, that
is,

f(x,p, t) = f(p, t), (1)

where p = |p|. In the cosmological context, the time dependence of the phase-space density typically enters via the
temperature T since the Universe tends to cool as it expands. In fact, it is rather natural to use the temperature as
the time variable (much like we have used the scale factor a or the redshift z as a time variable). Here, we will adopt
this approach and write

f(p, t) = f(p, T (t)) = f(p, T ). (2)

Using this notation, we can review the key quantities we introduced last time, including the number density

n(T ) = g

∫
d3p

(2π)3
f(p, T ), (3)

which is the number of particle of a given species per unit volume. Here, g is the number of internal degrees of
freedom. Remember that we have set ~ = 1 here. We also introduced the energy density

ρ(T ) = g

∫
d3p

(2π)3
f(p, T )E(p). (4)

where E(p) =
√
p2 +m2 is the energy. In the above, we have assumed that the particles are essentially free, that

is, that we can neglect the interaction energies between the particles. This is usually a very good approximation in
cosmology. Meanwhile, the pressure P was given by

P (T ) = g

∫
d3p

(2π)3
f(p, T )

p2

3E(p)
. (5)

We also discussed that if a particle species is in kinetic equilibrium (i.e. particles are able to efficiently exchange
energy and momentum), then the particle distribution function takes either a Fermi-Dirac or Bose-Einstein form

f(p, T ) =
1

e(E(p)−µ)/T ± 1
, (6)

where the + sign is for fermions (half-integer spin) and the − sign for bosons (integer spin). Here, µ is the chemical
potential. Here, we have set the Boltzmann constant kB = 1, meaning that we are measuring temperature in units of
energy (eV, say). In cosmology, if a species has a nonzero chemical potential, it means that the number of particles
and of the corresponding anti-particles are different. For a particle species X and its anti-particle X̄, we generally
have

µX = −µX̄ . (7)
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II. RELATIVISTIC LIMIT

A. Number density

Let us first consider the relativistic limit p� m, such that E ' p. Here, we set the chemical potential to zero. The
number density is then given by

n(T ) = g

∫
d3p

(2π)3

1

ep/T ± 1

=
g

2π2

∫ ∞
0

dp
p2

ep/T ± 1

=
gT 3

2π2

∫ ∞
0

dx
x2

ex ± 1
, (8)

where we have changed the variable to x = p/T . We can now use the known result that∫ ∞
0

dx
xn

ex − 1
= ζ(n+ 1)Γ(n+ 1), (9)

where ζ(z) is the Riemann zeta function and Γ(n + 1) = n! (for integer n) is the gamma function. For bosons, we
immediately get the result

nBosons(T ) =
gζ(3)T 3

π2
, (10)

where ζ(3) ≈ 1.202. For fermions, we can also use the above result once we notice that

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
, (11)

which allows us to write ∫ ∞
0

dx
x2

ex + 1
=

∫ ∞
0

dx

[
x2

ex − 1
− 2x2

e2x − 1

]
= 2ζ(3)− 2

∫ ∞
0

dy

2

(y/2)2

ey − 1

= 2ζ(3)

(
1− 1

4

)
= 2ζ(3)

3

4
. (12)

For fermions, we thus get

nFermions(T ) =
3

4

gζ(3)T 3

π2
. (13)

We thus obtain the general behavior that n ∝ T 3 for a species in thermal equilibrium. For example, the number density
of CMB photons today (g = 2 for the two polarization, T0 = 2.725K = 2.348×10−4 eV, [using kB = 8.617×10−5 eV/K])
is given by

nγ(t0) =
2ζ(3)T 3

0

π2
' 410 photons/cm

3
, (14)

where we have used ~c = 1.97× 10−5 eV cm.



3

B. Energy density

Using E(p) = p, the energy density takes the form

ρ(T ) = g

∫
d3p

(2π)3

p

ep/T ± 1

=
g

2π2

∫ ∞
0

dp
p3

ep/T ± 1

=
gT 4

2π2

∫ ∞
0

dx
x3

ex ± 1
, (15)

where we have defined x = p/T . For bosons, we can directly used the result from Eq. (9) to obtain

ρBosons(T ) = 3!
gT 4

2π2
ζ(4) = 3

gT 4

π2

π4

90
= g

π2

30
T 4, (16)

where we have used the fact that ζ(4) = π4/90. For fermions, we use the same trick as in Eq. (11), which allows us
to write ∫ ∞

0

dx
x3

ex + 1
=

∫ ∞
0

dx

[
x3

ex − 1
− 2x3

e2x − 1

]
= 3!ζ(4)− 2

∫ ∞
0

dy

2

(y/2)3

ey − 1

= 6
π4

90
− 1

8
6
π4

90

= 2
7

8

π4

30
. (17)

Thus, for fermions the energy density is

ρFermions(T ) = g
7

8

π2

30
T 4. (18)

We this obtain the general behavior that ρ ∝ T 4 for a species in thermal equilibrium. At the same temperature, a
fermionic species has an energy density that is suppressed by a factor of 7/8 compared to a similar bosonic gas.

For example, the energy density in CMB photons today is

ργ(t0) = 2
π2

30
T 4

0 =
π2

15
T 4

0 = 2.0× 10−15 eV4. (19)

Dividing this by the critical density of the Universe today ρc = 3H2
0/(8πG) = 8.098h2 × 10−11 eV4, we get

Ωγ =
ργ(t0)

ρc
= 2.47× 10−5h−2, (20)

which is the number we quoted before. Here, h is the reduced Hubble rate h = H0/(100 km/s/Mpc).

C. Pressure

Using E(p) = p, the pressure takes the form

P (T ) = g

∫
d3p

(2π)3
f(p)

p

3
=

1

3
g

∫
d3p

(2π)3
f(p)p =

ρ(T )

3
, (21)

that is, we just retrieve the standard equation of state for relativistic particles w = P/ρ = 1/3.


