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ete” annihilation, neutrino decoupling, and entropy conservation
(Dated: October 9, 2025)

I. NEUTRINO DECOUPLING

As we saw last time, the weak interaction (mediated by the W and Z boson) can no longer maintain the neutrinos
in kinetic equilibrium with the rest of the plasma (made of e™, e™, and ) at temperatures below T' ~ 1 MeV. This
leaves the neutrinos on their own, with a distribution function reflecting what it was at the time of decoupling
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that is, the relativistic Fermi-Dirac distribution. Since neutrinos are no longer interacting with any other particles,
no particle collision can change this distribution from that point onward. Only the expansion of the Universe acts to
cool the neutrino temperature as T, « 1/a, where a is the scale factor of the Universe. Maintaining the invariance of
fv(p) requires that the momentum p o< 1/a. This turns our to be always true for any particle (relativistic or not), but
it is easy to see this scaling for, say, photons, for which p = E o« 1/), where the wavelength A  a is stretched by the
expansion of the Universe (causing what we called redshift). Since the distribution function is now fixed, quantities
derived from it, such as the neutrino number density, are simple to calculate
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for one species of neutrinos. This scales as n,, o« 1/a® (since T,, o 1/a) as we expect from volumetric dilution from the
expansion. The key question is then, what is 7,7 Before eTe™ annihilation, the answer is simply 7, = T, where T}, is
the photon temperature. However, after ee™ annihilate and dump their energy in the photon bath, the photons gain
some energy compared to the neutrinos. Since the neutrinos receive none of this energy (since they are decoupled from
the rest of the plasma), this leads to T), > T}, after e*e™ annihilation ends. To compute this temperature difference,
we need to discuss the conservation of entropy in an expanding universe.

II. CONSERVATION OF ENTROPY

The second law of thermodynamics states that the entropy S is always either constant or increasing dS > 0. If
the Universe is in thermal equilibrium as it expands, it turns out (as we will show below) that the inequality is
saturated and the entropy of the Universe is constant. In thermodynamics language, this means that we can consider
the expansion of the Universe as an adiabatic (reversible) process. To see this, we first need to derive an expression
for the entropy of the Universe in terms of quantity we already know like the energy density p and the pressure P.
To do so, we will need the following relation
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which is valid in thermal equilibrium with /T < 1. This expression is easy to generalize for large chemical potentials,

but we will neglect the chemical potential here for simplicity. Now, starting from the first law of thermodynamics
(assuming again that /T < 1)

TdS =dE + PdV (4)

where FE is the energy and V is the volume. Writing E = pV, we get
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which shows that the entropy of the Universe is simply
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As usual in cosmology, we will be interested in the entropy density (or entropy per unit volume) s,
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The evolution of s is given by
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where we have used Eq. (3) in going from the second to third line, and where we have used the fluid equation
p+3H(p+ P) =0 in the third line. This means that the entropy density obeys the following equation
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which means that a®s =constant in an expanding universe. This makes sense since s = S/V and V  a?, but it can
only be true if S = constant. This shows that the total entropy is constant in an expanding Universe.

III. ENTROPY IN OUR UNIVERSE

Now that we know the definition of entropy density given in Eq. (7), we can compute its value
pi + P
= LR 10
=X, (10)

This sum is always completely dominated by relativistic particles (i.e. radiation) since non-relativistic particles in our
Universe have either exponentially suppressed abundances (n o« e~ m/ 7, or have number densities that are orders of
magnitude smaller than that of photons. For radiation, we have P; = p;/3, so s is given by
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is the effective number of degrees of freedom in entropy. We see that if all particle in the Universe are in thermal
equilibrium at the same temperature, we have g.s(7T") = g«(T"). This is true before neutrino decoupling, but not after.
Conservation of entropy a®s = constant implies that
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When g.s is constant, we retrieve the standard result that T oc 1/a. However, when g.g is changing T no longer
decays as 1/a, but instead decays slower. This reflects the fact that when g.s changes, particles are disappearing
from the plasma and transferring their entropy and energy to other particles in the plasma, causing their temperature
to decay less fast. We now want to apply the concept of entropy conservation to the process of eTe™ annihilation.



IV. NEUTRINO TEMPERATURE AFTER e"e” ANNIHILATION

We are now ready to use entropy conservation to compute the temperature ratio T, /T, after ete™ annihilation has
played out. First, let’s consider the entropy density of the Universe at time ¢; (scale factor a; = a(t1) and temperature
T}) before eTe™ annihilation
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After the completion of eTe™ annihilation, the entropy density at time t5 (scale factor az = a(ts)) is
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where we have now allowed for photons and neutrinos to have different temperatures since photons get the entropy
and energy from the annihilating e*e~ while neutrinos do not. Entropy conservation implies that s(a;)a} = s(az)a3,
which leads to
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Now, neutrinos receive no energy from from e*e™ annihilation so their temperature always scales as 1/a, meaning

that a1Th = a2T, (az). We are thus left with
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implying that the temperature ratio after eT™e™ annihilation is
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so the neutrinos are indeed colder than the photons. After this point, both photon and neutrino temperatures scale

as 1/a so this ratio stays constant for the remainder of the history of the Universe. The detailed evolution of the
temperatures through ete™ annihilation is given in Fig. 1 below.
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FIG. 1. Evolution of the neutrinos and photon temperatures as a function of scale factor. Figure taken from Baumann (2022).



