Question 1

In this question, we want to determine the equilibrium abundance of deuterium (D) nuclei at temperatures $T \sim$ a few MeV, which are assembled via the reaction

$$n + p \leftrightarrow D + \gamma \tag{1}$$

a) Assuming $\mu_{\gamma} = 0$ and that the above reaction is in chemical equilibrium, show that

$$\left(\frac{n_{\rm D}}{n_{\rm n}n_{\rm p}}\right)_{\rm eq} = \frac{3}{4} \left(\frac{m_{\rm D}}{m_{\rm n}m_{\rm p}} \frac{2\pi}{T}\right)^{3/2} e^{B_{\rm D}/T} \tag{2}$$

Where $B_{\rm D} = m_{\rm n} + m_{\rm p} - m_{\rm D} = 2.2$ MeV is the binding energy of deuterium. Here, $n_{\rm n}$, $n_{\rm p}$, and $n_{\rm D}$ are the number densities of neutrons, protons, and deuterium, respectively. Note that deuterium is a spin-1 nucleus.

b) Since $B_{\rm D} \ll m_{\rm p} + m_{\rm n} \simeq 1.9$ GeV, argue that the above can be approximated written as

$$\left(\frac{n_{\rm D}}{n_{\rm p}}\right)_{\rm eq} = \frac{3}{4}n_{\rm n,eq} \left(\frac{4\pi}{m_{\rm p}T}\right)^{3/2} e^{B_{\rm D}/T} \tag{3}$$

c) Using the approximation that $n_{\rm n} \sim n_{\rm b}/2$, where $n_{\rm b}$ is the baryon number density, show that

$$\left(\frac{n_{\rm D}}{n_{\rm p}}\right)_{\rm eg} \approx 4\eta_{\rm b} \left(\frac{T}{m_{\rm p}}\right)^{3/2} e^{B_{\rm D}/T},$$
 (4)

where $\eta_{\rm b} \sim 6 \times 10^{-10}$ is the baryon to photon ratio. Thus, unless the exponential factor is large (which occurs for $T \ll B_{\rm D}$), the abundance of deuterium is very small.

a) We start by recalling that the number density of a given species in equilibrium is given by:

$$n_i^{\text{eq}} = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} \exp\left(\frac{\mu_i - m_i}{T}\right)$$
 (5)

Where g_i, μ_i, m_i denote the number of degrees of freedom, chemical potential, and mass of the species, respectively.

Protons and neutrons are spin 1/2 particles, so $g_p = g_n = 2$. Deuterium is not elementary, and happens to be spin-1, so $g_D = 3$.

Using the fact that $\mu_{\gamma} = 0$, we can use the reaction relation (Eq. 1) to see that

$$\mu_{\rm n} + \mu_{\rm p} = \mu_{\rm D} \tag{6}$$

We combine the spin of a proton and a neutron (the constituents of Deuterium) $\frac{1}{2} \otimes \frac{1}{2}$, and we are able to get a composite system of spin 1 ("triplet") or spin 0 ("singlet"), $1 \oplus 0$. The triplet state happens to be favorable over the the singlet state.

Putting these pieces together, we can explicitly construct $\left(\frac{n_{\rm D}}{n_{\rm n}n_{\rm p}}\right)_{\rm eq.}$:

$$\left(\frac{n_{\rm D}}{n_{\rm n}n_{\rm p}}\right)_{\rm eq.} = \frac{3}{2 \cdot 2} \left(\frac{m_{\rm D}}{m_{\rm n}m_{\rm p}}\right)^{3/2} \left(\frac{2\pi}{T}\right)^{3/2} \exp\left(\frac{\mu_{\rm D} - m_{\rm D}}{T} + \frac{m_{\rm n} - \mu_{\rm n}}{T} + \frac{m_{\rm p} - \mu_{\rm p}}{T}\right)
= \frac{3}{4} \left(\frac{m_{\rm D}}{m_{\rm n}m_{\rm p}} \cdot \frac{2\pi}{T}\right)^{3/2} \exp\left(\frac{\mu_{\rm D} - (\mu_{\rm n} + \mu_{\rm p}) + m_{\rm P} + m_{\rm n} - m_{\rm D}}{T}\right)
= \frac{3}{4} \left(\frac{m_{\rm D}}{m_{\rm n}m_{\rm p}} \cdot \frac{2\pi}{T}\right)^{3/2} \exp\left(\frac{m_{\rm P} + m_{\rm n} - m_{\rm D}}{T}\right)
= \frac{3}{4} \left(\frac{m_{\rm D}}{m_{\rm n}m_{\rm p}} \frac{2\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}$$
(7)

b) Because $B_{\rm D} \ll m_{\rm p} + m_{\rm n}$, it follows that

$$m_{\rm D} \simeq m_{\rm p} + m_{\rm n} \simeq 2m_{\rm n}$$
 (8)

Let's use this result directly in the answer from part (a):

$$\left(\frac{n_{\rm D}}{n_{\rm n}n_{\rm p}}\right)_{\rm eq.} = \frac{3}{4} \left(\frac{m_{\rm D}}{m_{\rm n}m_{\rm p}} \frac{2\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}
= \frac{3}{4} \left(\frac{2m_{\rm n}}{m_{\rm n}m_{\rm p}} \frac{2\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}
= \frac{3}{4} \left(\frac{1}{m_{\rm p}} \frac{4\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}$$
(9)

So

$$\left(\frac{n_{\rm D}}{n_{\rm p}}\right)_{\rm eq.} = (n_{\rm n})_{\rm eq.} \frac{3}{4} \left(\frac{1}{m_{\rm p}} \frac{4\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}$$
 (10)

c) As given, suppose that $n_{\rm n} \sim n_{\rm b}/2$. Further, recall that

$$n_{\rm b} = \eta n_{\gamma}$$
 (by definition)
= $\eta \frac{2\zeta(3)}{\pi^2} T^3$ (11)

Substituting these expressions in the answer from part (b), we observe that

$$\left(\frac{n_{\rm D}}{n_{\rm p}}\right)_{\rm eq.} = (n_{\rm n})_{\rm eq.} \frac{3}{4} \left(\frac{1}{m_{\rm p}} \frac{4\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}
= \frac{n_{\rm b}}{2} \cdot \frac{3}{4} \left(\frac{1}{m_{\rm p}} \frac{4\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}
= \frac{1}{2} \cdot \left(\eta \frac{2\zeta(3)}{\pi^2} T^3\right) \frac{3}{4} \left(\frac{1}{m_{\rm p}} \frac{4\pi}{T}\right)^{3/2} e^{B_{\rm D}/T}
= \frac{1}{2} \cdot \frac{2\zeta(3)}{\pi^2} \cdot \frac{3}{4} \cdot (4\pi)^{3/2} \eta \left(\frac{T}{m_{\rm p}}\right)^{3/2} e^{B_{\rm D}/T}$$
(12)

The constants yield a factor of

$$\frac{1}{2} \cdot \frac{2\zeta(3)}{\pi^2} \cdot \frac{3}{4} \cdot (4\pi)^{3/2} = \frac{6\zeta(3)}{\sqrt{\pi}}$$

$$= 4.069$$

$$\approx 4$$
(13)

So

$$\left(\frac{n_{\rm D}}{n_{\rm p}}\right)_{\rm eq.} = 4.069 \, \eta \left(\frac{T}{m_{\rm p}}\right)^{3/2} e^{B_{\rm D}/T}$$

$$\simeq 4\eta \left(\frac{T}{m_{\rm p}}\right)^{3/2} e^{B_{\rm D}/T} \tag{14}$$