Problem 1

Consider a universe filled with a single component with a constant equation of state $p/\rho = w$. In this case, as we saw last time, the density of such component scales as $\rho = \rho_0 a^{-3(1+w)}$, where ρ_0 is the density today.

- a) Solve the Friedmann equation (assume k=0) for the scale factor a(t) in such a universe, assuming that $w \neq -1$.
- b) Now repeat the calculation for the case that w = -1.
- c) How does the scale factor behave in a matter-dominated universe (w = 0)? How about a radiation-dominated universe (w = 1/3)?
- a) Recall the Friedmann equation (setting k = 0, from the lecture notes The Friedmann equation and curvature, eq. 13)

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho(t) \tag{1}$$

Where a dot 'denotes a derivative with respect to time. Further, when the equation of state is constant $w = p/\rho$, then the evolution of the energy density follows $\rho = \rho_0 a^{-3(1+w)}$. Plugging this into the Friedmann equation gives:

$$\dot{a}^2 = a^2 \frac{8\pi G}{3} \rho_0 a^{-3(1+w)} \tag{2}$$

Group the a factors and take a square root on both sides to get a differential equation for a(t):

$$\dot{a} = \left(\frac{8\pi G}{3}a^{-3(1+w)+2}\right)^{1/2}$$

$$\frac{da}{dt} = \sqrt{\frac{8\pi G}{3}}a^{\frac{-3(1+w)+2}{2}}$$

$$da = \sqrt{\frac{8\pi G}{3}}a^{-(1+3w)/2}dt$$

$$a^{(1+3w)/2}da = \sqrt{\frac{8\pi G}{3}}dt$$
(3)

We then integrate both sides:

$$\int_0^a a^{(1+3w)/2} da = \sqrt{\frac{8\pi G}{3}} \int_0^t dt$$

$$\frac{2a^{\frac{3(w+1)}{2}}}{3(w+1)} = \sqrt{\frac{8\pi G}{3}} t$$
(4)

We can move the exponents of a to the right hand side, and we see that

$$a(t) \propto t^{\frac{2}{3(1+w)}} \tag{5}$$

b) If w = -1, then $\rho(a) = \rho_0$. That is, the right hand side of the Friedmann equation is constant, and we can instead write H_0^2 (more informative) than $8\pi G\rho_0/3$:

$$\left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2}$$

$$\frac{\dot{a}}{a} = H_{0}$$

$$\frac{da}{da} \frac{1}{a} = H_{0}$$

$$\frac{da}{a} = H_{0}dt$$

$$\int \frac{da}{a} = \int H_{0}dt$$

$$\ln a = H_{0}t + C$$

$$a(t) \propto \exp(H_{0}t)$$
(6)

c) If w = 0 (that is, a matter dominated universe), then

$$a(t) \propto t^{2/3} \tag{7}$$

If w = 1/3 (that is, a radiation dominated universe), then

$$a(t) \propto t^{1/2} \tag{8}$$