
Worksheet #6 ASTR 425/525 Monday 09/08/2025

Problem 1
Consider a universe filled with a single component with a constant equation of state p/ρ = w. In
this case, as we saw last time, the density of such component scales as ρ = ρ0a

−3(1+w), where ρ0
is the density today.

a) Solve the Friedmann equation (assume k = 0) for the scale factor a(t) in such a universe,
assuming that w ̸= −1.

b) Now repeat the calculation for the case that w = −1.

c) How does the scale factor behave in a matter-dominated universe (w = 0)? How about a
radiation-dominated universe (w = 1/3)?

a) Recall the Friedmann equation (setting k = 0, from the lecture notes The Friedmann equation

and curvature, eq. 13) (
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Where a dot ˙ denotes a derivative with respect to time. Further, when the equation of state
is constant w = p/ρ, then the evolution of the energy density follows ρ = ρ0a

−3(1+w). Plugging
this into the Friedmann equation gives:
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Group the a factors and take a square root on both sides to get a differential equation for a(t):
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We then integrate both sides:
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We can move the exponents of a to the right hand side, and we see that

a(t) ∝ t
2

3(1+w) (5)
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b) If w = −1, then ρ(a) = ρ0. That is, the right hand side of the Friedmann equation is constant,
and we can instead write H2

0 (more informative) than 8πGρ0/3:(
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c) If w = 0 (that is, a matter dominated universe), then

a(t) ∝ t2/3 (7)

If w = 1/3 (that is, a radiation dominated universe), then

a(t) ∝ t1/2 (8)
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