$\underset{\text{Cosmology}}{\text{ASTR } 425/525}$ Worksheet #3 Monday 08/25/2025 | Question | 1. | |----------------------------|--| | distance in paths (ds^2) | $a(t) = (t/t_0)^{2/3}$, where $t_0 = 13.8$ Gyrs is the age of the Universe, compute the comoving Gpc travelled by a photon since the Big Bang $(t = 0)$. Photons always travel on null $t = 0$. How does this compare to the size of the visible Universe? Remember that 1 pc $t = 0^{16}$ m and $t = 0^{16}$ m and $t = 0^{16}$ m. | ASTR 425/525 Worksheet # 3 | Question 2. | | | | |--|--|--|--| | If two objects have a physical separation of 150 Mpc today (t_0) , what was their separation when the Universe was 380,000 years old? Assume that $a(t) = (t/t_0)^{2/3}$. |