
ASTR 425/525
Cosmology

Homework Assignment 5
Due date: Monday November 24 2025, in class

Question 1 (5 points).

In class, we wrote down the decomposition on the celestial sphere of the cosmic microwave back-
ground (CMB) temperature anisotropies as

δT (n̂)

T̄
≡ T (n̂)− T̄

T̄
=

∞∑
l=2

l∑
m=−1

almYlm(n̂), (1)

where n̂ = n̂(θ, φ) is a unit vector on the sphere, T̄ = 〈T (n̂)〉 is the average temperature of the
CMB sky, and Ylm are spherical harmonics, which form a complete basis for functions defined on
the unit sphere. Here, 〈. . .〉 denotes the ensemble average over different realizations of the CMB
sky. We also have removed the dipole (l = 1) since it is dominated by our motion through space
rather than the primary anisotropies.

(a) Given a measured map of δT (n̂)/T̄ on the sky, one can compute the corresponding alm
coefficients. Use the orthogonality condition of spherical harmonics∫

dΩYlm(n̂)Y ∗l′m′(n̂) = δll′δmm′ , (2)

where dΩ = sin θdθdφ is the solid angle integral measure, Y ∗lm is the complex conjugate of Ylm,
and δij is the Kronecker delta, to show that the alm coefficients are given by

alm =

∫
dΩY ∗lm(n̂)

δT (n̂)

T̄
(3)

(b) Show that, by construction, the alm coefficients are zero-mean variables

〈alm〉 = 0. (4)

(c) Therefore, the first nonzero statistical moment of the alm is their variance (two-point function),
which can written as

〈alma∗l′m′〉 = Clδll′δmm′ , (5)

where the Kronecker deltas are a consequence of statistical isotropy. Here, Cl is referred to
as the angular temperature power spectrum. The perhaps surprising thing in our Universe is
that Cl captures the entire statistical properties of the CMB (that is, higher n-point functions
are either zero or given by products of Cl). In other words, the alm are normally distributed
random variables (i.e. alm are sampled from a Gaussian distribution with zero mean and
standard deviation given by

√
Cl). Now, imagine that we have a full-sky, noise free, map of

δT (n̂)/T̄ . The alm for such a map can be computed using Eq. (3) above. For each l, the alm
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could be seen as 2l + 1 independent samples from the Gaussian distribution with zero mean
and variance Cl. From these measured alm, we can estimate the variance Cl as

Ĉl =
1

2l + 1

l∑
m=−l

|alm|2. (6)

This estimator is unbiased, i.e. 〈Ĉl〉 = Cl, but it has a non-vanishing variance 〈(Cl− Ĉl)
2〉 6= 0

between the true and estimated Cl, implying that even with a perfect noise-free map of the
sky we cannot measure Cl to arbitrary precision. Show that any Cl measurement has an
irreducible error given by

∆Cl

Cl
≡

√
〈(Cl − Ĉl)2〉

Cl
=

√
2

2l + 1
. (7)

This intrinsic error is usually referred to as cosmic variance and is worse for low values of l
(large angular scales). Hint: use Wick’s theorem to derive the above

〈alma∗lmalm′a∗lm′〉 = 〈alma∗lm〉〈alm′a∗lm′〉+ 〈almalm′〉〈a∗lma∗lm′〉+ 〈alma∗lm′〉〈a∗lmalm′〉. (8)

Question 2 (10 points).

At the start of inflation, the typical size of the Universe (that is, the size of a causally connected
region) was H−1

I , where HI was the Hubble expansion rate at that time. During inflation, this small
causally connected region was stretched by a humongous factor

H−1
I → eHI∆tH−1

I , (9)

where ∆t is the duration of inflation and HI is constant. It is useful to define N ≡ HI∆t, which
represents the number of e-folds that occurred during inflation. The question we would like to
answer now is how many e-folds of inflationary expansion are necessary to solve either the horizon
or flatness problem.

(a) While the exact energy scale at which inflation occurred is unknown, a decent guess is that
it happened at the Grand Unification scale at which the electroweak and strong force unify
into a single interaction. It is believed that this transition occurs when the temperature of
the Universe was TGUT ' 1015 GeV. If this is the case, then the Hubble rate during inflation
can be estimated from the Friedmann equation as

H2
I =

8πG

3

π2

30
g∗(TGUT)T 4

GUT. (10)

Show that the Hubble rate during inflation in this scenario isHI ' 1.4×1012 GeV. Assume only
the particle content of the Standard Model. Using unit conversion, show that this corresponds
to a Universe of approximate size H−1

I ' 1.4× 10−28 m at that time.

(b) Use the fact that T0 = 2.725 K = 2.348 × 10−4 eV today to argue that the Universe has
expanded by a factor of ∼ 4 × 1027 between the end of inflation (when T = 1015 GeV) and
today. Assume that T ∝ 1/a always, where a is the scale factor.
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(c) To solve the horizon problem, we need the initial causally connected region of size H−1
I to

be stretched such that the whole of the CMB last scattering surface today is causal. If the
comoving radius of the last scattering surface today is ∼ 3.1H−1

0 , how many e-folds of inflation
are necessary to make the last-scattering surface causal? Don’t forget the amount of expansion
that occurred between the end of inflation and today (i.e. the answer from part (b)). For this
problem, it is useful to use the Hubble constant in natural units, H0 = 2.133h × 10−33 eV,
with h = 0.674.

(d) To solve the flatness problem, we need to explain why |ΩK | < 0.001. Writing

ΩK =
κ

R2H2
0

, (11)

where κ = {−1, 0, 1} and R is the radius of curvature of the Universe, the constraint can be
written as

R > 103H−1
0 . (12)

The flatness problem can be solved if the small causally connected region of size H−1
I get

stretched such that it has size ≥ R today. Using the above constraint on R, how many e-folds
of inflation are necessary to solve the flatness problem. Again, do not forget to use your answer
from part (b).


