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1 Boltzmann Entropy

In the microcanonical ensemble, macrostates are labeled by their total energy E. We use Ω(E) to denote
the multiplicity of that macrostate (the number of microstates).

We define the Boltzmann Entropy as:

S(E) ≡ kB ln Ω(E) (1)

where kB is the Boltzmann constant:

kB ≈ 1.381× 10−23 J/K (2)

1.1 Why the Logarithm?

There are two main reasons for defining entropy with a natural logarithm:

1. Tractability: Multiplicities are often astronomically large numbers (e.g., if Ω(E) ∼ eN , then
S(E) ∼ N). The logarithm makes these numbers manageable.

2. Additivity: The logarithm makes entropy an additive quantity. Consider two non-interacting
systems with energies E1 and E2. The total number of states is the product of their individual
multiplicities:

Ω(E1, E2) = Ω1(E1)Ω2(E2) (3)

Taking the logarithm gives:

S(E1, E2) = kB ln(Ω1Ω2) = S1(E1) + S2(E2) (4)

2 The Second Law of Thermodynamics

Consider two initially isolated systems brought together so they can exchange energy (thermal contact).
We assume the energy levels of each system remain unchanged by the interaction. In practice, this means
that the interaction term in the joint Hamiltonian is small.

2.1 Energy Conservation and Multiplicity

The energy of the combined system is fixed:

Etot = E1 + E2 (5)

After contact, system 1 can have any energy E1 ≤ Etot, and system 2 must have the remainder E2 =
Etot − E1.

In a quantum system, energy is discrete. The total multiplicity of the combined system is the sum
over all possible partitions of energy:

Ω(Etot) =
∑
{Ei}

Ω1(Ei)Ω2(Etot − Ei) (6)
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Expressing this in terms of entropy (Ω = eS/kB ):

Ω(Etot) =
∑
{Ei}

exp

[
S1(Ei) + S2(Etot − Ei)

kB

]
(7)

The entropy of the combined system is S(Etot) = kB ln(Ω(Etot)). Since the new total multiplicity
includes all possible partitions, it is strictly greater than the multiplicity of the separated systems:

S(Etot) > S1(E1) + S2(E2) = kB ln(Ω1(E1)Ω2(E2)) (8)

The entropy has increased because the number of available microstates has increased dramatically.

2.2 The Dominant Term

The sum of exponentials in Ω(Etot) above is dominated by its largest term. Let E∗ be the energy for
system 1 that maximizes the argument S1(E) + S2(Etot − E).

• For one choice of E, the term might be eN .

• For the optimal choice E∗, the term might be e2N .

Since e2N � eN (e.g., if N = 100, 1086 � 1043), we can approximate the sum by just the largest term:

S(Etot) ≈ S1(E∗) + S2(Etot − E∗) (9)

The condition for this maximum (the extremum) is found where the derivatives with respect to energy
are equal:

∂S1

∂E1

∣∣∣∣
E1=E∗

=
∂S2

∂E2

∣∣∣∣
E2=Etot−E∗

(10)

2.3 Irreversibility

Once the system reaches the energy distribution E∗ (which maximizes the number of states), it is
extremely unlikely to ever return to a state with different energy partitioning. This statistical probability
is responsible for the irreversibility we observe in nature.

The Second Law: Entropy always increases. Equivalently, when constraints on a system are
removed, the total number of available states is vastly enlarged.

Note: While the 2nd Law is probabilistic, deviations are so improbable for macroscopic systems
(N ∼ 1023) that they are effectively impossible. The law is ”protected” by numbers so large they are
”silly.”

3 Example: The Einstein Solid

An Einstein solid is a collection of N quantum harmonic oscillators.

3.1 Energy Levels

The energy of a single oscillator is:

Ei =

(
ni +

1

2

)
~ω, ni ∈ {0, 1, 2, . . . } (11)

In the microcanonical ensemble, we fix the total energy:

Etot =

N∑
i=1

(
ni +

1

2

)
~ω =

(
q +

N

2

)
~ω (12)

Here, q =
∑

ni represents the total number of energy quanta distributed among the N oscillators.
Macrostates are labeled by q.
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3.2 Multiplicity Calculation (Stars and Bars)

To find the number of microstates for a given N and q, we use combinatorics. We must distribute q
indistinguishable quanta (dots) among N distinguishable oscillators (bins). This requires N − 1 dividers
(bars).

The total number of arrangements of q dots and N −1 bars is (q+N −1)!. However, we must correct
for the indistinguishability of the dots and the bars. The multiplicity is:

Ω(N, q) =
(q + N − 1)!

q!(N − 1)!
=

(
q + N − 1

q

)
(13)

3.3 Two Interacting Einstein Solids

Consider two solids, A and B, brought into thermal contact.

• Solid A: NA oscillators, qA quanta.

• Solid B: NB oscillators, qB quanta.

• The total quanta are fixed: qtot = qA + qB .

Numerical Example: Let NA = 3, NB = 3, and qtot = 6. We calculate the multiplicity for each
macrostate (defined by qA).

The multiplicity for one solid (N = 3) is Ω(3, q) = (q+2)!
q!2! = (q+2)(q+1)

2 .

qA ΩA(3, qA) qB (6− qA) ΩB(3, qB) Ωtot = ΩAΩB

0 1 6 28 28
1 3 5 21 63
2 6 4 15 90
3 10 3 10 100
4 15 2 6 90
5 21 1 3 63
6 28 0 1 28

Conclusion: The macrostate with qA = qB = 3 (equipartition of energy) has the largest multiplicity
(Ωtot = 100). This corresponds to the highest entropy and is the most likely state for the combined
system to be in at equilibrium.
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