

PHYS 301

Thermodynamics and Statistical Mechanics

Problems #1

Wednesday, 01/21/2026

Question 1.

Suppose you flip 50 fair coins.

- (a) How many possible microstates are there? How many macrostates?
- (b) How many ways are there of getting exactly 25 heads and 25 tails?
- (c) What is the probability of getting exactly 25 heads and 25 tails?
- (d) What is the probability of getting exactly 30 heads and 20 tails?
- (e) What is the probability of getting exactly 40 heads and 10 tails?
- (f) What is the probability of getting exactly 50 heads?
- (g) Sketch a graph of the probability of getting n heads, as a function of n .

Question 2.

An Einstein solid is a collection of N independent quantum harmonic oscillators with fundamental frequency ω . The i th harmonic oscillator in this system has energy

$$E_i = \left(n_i + \frac{1}{2} \right) \hbar\omega, \quad (1)$$

where n_i is an integer larger or equal to zero. For an Einstein solid, the macrostates can be labeled by the total energy of the system

$$E_{\text{tot}} = \sum_{i=1}^N E_i = \sum_{i=1}^N \left(n_i + \frac{1}{2} \right) \hbar\omega = \left(\sum_{i=1}^N n_i + \frac{N}{2} \right) \hbar\omega = \left(q + \frac{N}{2} \right) \hbar\omega, \quad (2)$$

where we have introduced the total number of energy quanta in the system as $q = \sum_{i=1}^N n_i$. Thus, macrostates can be labeled by q in the microcanonical ensemble.

- (a) List all possible microstates for $N = 3$ oscillators sharing $q = 2$ energy quanta.
- (b) List all possible microstates for $N = 3$ oscillators sharing $q = 3$ energy quanta.
- (c) List all possible microstates for $N = 3$ oscillators sharing $q = 4$ energy quanta.
- (d) Argue that for N oscillators sharing q energy quanta, the multiplicity of that macrostate is

$$\Omega(N, q) = \frac{(q + N - 1)!}{q!(N - 1)!}. \quad (3)$$