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I. PROBLEMS WITH THE HOT BIG BANG

As we discussed last week, once neutral atoms form during the epoch of recombination, the photons cease to interact
with the baryonic matter and start to propagate freely through the Universe. We observe these photons today as the
cosmic microwave background (CMB). As I have mentioned, the CMB appears isotropic across the night sky with a
mean temperature today of T0 = 2.7255 K.
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Figure 2.2: The horizon problem in the conventional Big Bang model. All events that we currently observe are

on our past light cone. The intersection of our past light cone with the spacelike slice labelled “recombination”

corresponds to two opposite points in the observed CMB. Their past light cones don’t overlap before they

hit the singularity, ai = 0, so the points appear never to have been in causal contact. The same applies to

any two points in the CMB that are separated by more than 1 degree on the sky.

We see that in the standard cosmology �p ⇠ (aH)�1. This has led to the confusing practice of

referring to both the particle horizon and the Hubble radius as the “horizon”.

2.1.3 Why is the CMB so uniform?

About 380 000 years after the Big Bang, the universe had cooled enough to allow the formation

of the first hydrogen atoms. In this process, photons decoupled from the primordial plasma

(see §3.3.3). We observe this event in the form of the cosmic microwave background (CMB),

an afterglow of the hot Big Bang. Remarkably, this radiation is almost perfectly isotropic, with

anisotropies in the CMB temperature being smaller than one part in ten thousand.

A moment’s thought will convince you that the finiteness of the conformal time elapsed

between ti = 0 and the time of the formation of the CMB, trec, implies a serious problem: it

means that most parts of the CMB have non-overlapping past light cones and hence never were

in causal contact. This is illustrated by the spacetime diagram in Fig. 2.2. Consider two opposite

directions on the sky. The CMB photons that we receive from these directions were emitted at

the points labelled p and q in Fig. 2.2. We see that the photons were emitted su�ciently close

FIG. 1. Causal structure of the last-scattering surface. The small circles represent the largest distance that information could
have travelled between the Big Bang and the epoch of last scattering. The large circle represents the last-scattering surface
where all the CMB photons we observe today were emitted. Clearly, multiple regions of the last-scattering surface were not in
causal contact with each other at that time. Figure from Baumann (2022).

A. The horizon problem

The apparent isotropy of the CMB poses an immediate problem: how can two photons coming from opposite
directions in the sky have the same temperature? These photons could not have been in thermal contact since they
were emitted from two different points very distant from each other at the epoch of last scattering (see points p and
q in Fig. 1 above). But the problem is even worse than that: even nearby points on the sky could not have been in
thermal contact at the epoch of last scattering. To see this, consider the comoving distance that a photon could have
travelled from the Big Bang to the epoch of last scattering

η∗ =

∫ ∞
z∗

dz

H(z)
, (1)

where z∗ is the redshift of photon last-scattering. We know however that photons cannot travel very far in the early
Universe since they keep scattering off free electrons. In fact, until z∗ the mean free path of photons is very small and
thus sending photons is not a very efficient way to transmit information on large distances. As long as the Universe
is ionized, a much better way to send signal over long distances is to send plasma sound waves. These waves travel at
the speed of sound (rather than the speed of light). This sound speed cs can be estimated in the radiation-dominated
epoch of the early Universe

c2s ≡
Ṗ

ρ̇
=

1
3 ρ̇

ρ̇
=

1

3
. (2)
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Thus, a better estimate for the comoving distance that information could have travelled between the Big Bang and
last scattering is

η∗ =

∫ ∞
z∗

csdz

H(z)
' 161 Mpc, (3)

where we have used Ωm = 0.311, Ωrad = 9.1× 10−5, ΩK = 0, and H0 = 67.66 km/s/Mpc. Meanwhile, the comoving
distance travelled by a photon after last scattering to get to us is

χ∗ =

∫ z∗

0

dz

H(z)
' 13, 880 Mpc. (4)

This implies that the maximum angle on the sky between CMB photons that were in causal contact is

θ =
2η∗
χ∗ ' 1.3 degrees, (5)

which is about twice the size of the full Moon on the night sky. CMB photons arriving to us separated by larger
angles were never in causal contact in the past. How can they have the same temperature then?? This is a serious
problem for cosmology. But it gets worse than that. The CoBE satellite discovered in the 1990s that the CMB is not
exactly isotropic, but instead contains small fluctuations at the level of 1 part in 10 thousands. The surprise is that
some of these fluctuations are spatially very extended, spanning large regions of the sky as can be seen from Fig. 2.
We say that these fluctuations must have been caused by super-horizon modes, since only physics acting beyond the
causal horizon could have caused such perturbations.

FIG. 2. The cosmic microwave background as observed by the CoBE satellite in the early 1990s. Here we are showing the
photon temperature contrast ∆T/T . We observe temperature fluctuations spanning large areas of the sky.

B. The flatness problem

According to current measurements, the Universe appears to be spatially flat ΩK ≈ 0. This is slightly surprising
since we know that curvature “redshifts” slower (ρK ∝ (1 + z)2) than either radiation (ρrad ∝ (1 + z)4) or matter
(ρm ∝ (1 + z)3). We would thus naturally expect curvature to start dominating over matter at some point in the
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history of the Universe. But this clearly didn’t happen. To put this problem in a broader context, consider the
Friedmann equation

H2 =
8πG

3
ρtot −

k

a2
, (6)

which can be re-written as

|k|
a2H2

=
∣∣∣8πG
3H2

ρtot − 1
∣∣∣, (7)

where we have taken absolute value since k could be negative. Now, in matter domination we have H2 ∝ a−3, while
in radiation domination we have H2 ∝ a−4. The above can then be rewritten as∣∣∣8πG

3H2
ρtot − 1

∣∣∣ ∝ {|k|a if matter dominates,

|k|a2 if radiation dominates.
(8)

We thus see that, unless k = 0 identically, the left-hand side is a growing function of time. That is, a flat Universe
(k = 0) is an unstable configuration; any perturbation away from flatness will get amplified over time. This points to
extremely stringent constraints on k since to infer k ∼ 0 today (that is, after the Universe has expanded by a very
large factor), k must have been insanely close to zero in the early Universe. We call this the flatness problem.

To get a quantitative estimate of how bad this problem is, let’s estimate how fine-tuned k needs to be match current
observations. The latest measurements from the Planck satellite, aided by some large-scale structure data, constrain
the curvature to be ΩK < 0.001. Since ΩK = −k/H2

0 , this tells us that |k|/H2
0 < 0.001 today. At the epoch of last

scattering (a ∼ 10−3), we must have had

|k|
H2

. 10−9 at last scattering, (9)

while at the onset of Big Bang Nucleosynthesis (a ∼ 10−10), we must have had

|k|
H2

. 10−23 at BBN, (10)

and finally during electroweak symmetry breaking (a ∼ 10−15), we must have had

|k|
H2

. 10−33 at electroweak breaking. (11)

This is an extreme level of tuning to have without a clear physical reason why. For a different perspective on this
problem, remember that the curvature term can be written as k = κ/R2, where κ = {−1, 0, 1}, and R is the radius
of curvature of the Universe. This last tuning can then be written as

|R| & 1033H−1. (12)

Remember that H−1 is the Hubble radius which sets the size of the observable Universe at any given time. The
puzzle here is why was the radius of curvature 33 orders of magnitude larger than the typical size of the Universe at
that time. Why this huge hierarchy? Physicists don’t like having numbers that are vastly different entering the same
problem without good reasons.

II. INFLATION

In 1981, Alan Guth came up with a solution to address both the horizon and flatness problem: inflation. In its
simplest form, inflation is a period of accelerated expansion in the very early Universe, that is a period in which
ä(t) > 0. From the acceleration equation

ä

a
= −4πG

3
(ρ+ 3P ) , (13)

having ä(t) > 0 requires

P < −ρ
3
. (14)
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We know a form of energy that can achieve this: a cosmological constant. Thus is the Universe was dominated at
very early times by a nearly constant energy density with w ≈ −1, the scale factor would admit an exponential form

a(t) ∝ eHIt, (15)

where HI is the (constant) Hubble rate during inflation. Since HI is (nearly) constant during inflation, then the size
of the Hubble radius is constant, while the size of the Universe as a whole is made exponentially larger.


