PHYS480/581 Cosmology
 Thermodynamics for Cosmologists II

(Dated: October 6, 2022)

I. NUMBER DENSITY, ENERGY DENSITY, AND PRESSURE

Last time, we introduced the number density

$$
\begin{equation*}
n(t)=g \int \frac{d^{3} p}{(2 \pi)^{3}} f(p, t) \tag{1}
\end{equation*}
$$

which is the number of particle of a given species per unit volume. Here, $f(p, t)$ is the particle distribution function, and g is the number of internal degrees of freedom. Remember that we have set $\hbar=1$ here. We also introduced the energy density

$$
\begin{equation*}
\rho(t)=g \int \frac{d^{3} p}{(2 \pi)^{3}} f(p, t) E(p) \tag{2}
\end{equation*}
$$

where $E(p)=\sqrt{p^{2}+m^{2}}$ is the energy. In the above, we have assumed that the particles are essentially free, that is, that we can neglect the interaction energies between the particles. This is usually a very good approximation in cosmology. Meanwhile, the pressure P was given by

$$
\begin{equation*}
P(t)=g \int \frac{d^{3} p}{(2 \pi)^{3}} f(p, t) \frac{p^{2}}{3 E(p)} \tag{3}
\end{equation*}
$$

We also discussed that if a particle species is in kinetic equilibrium (i.e. particles are able to efficiently exchange energy and momentum), then the particle distribution function takes either a Fermi-Dirac or Bose-Einstein form

$$
\begin{equation*}
f(p)=\frac{1}{e^{(E(p)-\mu) / T} \pm 1} \tag{4}
\end{equation*}
$$

where the $+\operatorname{sign}$ is for fermions (half-integer spin) and the - sign for bosons (integer spin). Here, μ is the chemical potential and T is the temperature. Here, we have set the Boltzmann constant $k_{\mathrm{B}}=1$, meaning that we are measuring temperature in units of energy (eV, say). In cosmology, if a species has a nonzero chemical potential, it means that the number of particles and of the corresponding anti-particles are different. For a particle species X and its anti-particle \bar{X}, we generally have

$$
\begin{equation*}
\mu_{X}=-\mu_{\bar{X}} \tag{5}
\end{equation*}
$$

II. RELATIVISTIC LIMIT

A. Number density

Let us first consider the relativistic limit $p \gg m$, such that $E \simeq p$. Here, we set the chemical potential to zero. The number density is then given by

$$
\begin{align*}
n & =g \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{e^{p / T} \pm 1} \\
& =\frac{g}{2 \pi^{2}} \int_{0}^{\infty} d p \frac{p^{2}}{e^{p / T} \pm 1} \\
& =\frac{g T^{3}}{2 \pi^{2}} \int_{0}^{\infty} d x \frac{x^{2}}{e^{x} \pm 1} \tag{6}
\end{align*}
$$

where we have changed the variable to $x=p / T$. We can now use the known result that

$$
\begin{equation*}
\int_{0}^{\infty} d x \frac{x^{n}}{e^{x}-1}=\zeta(n+1) \Gamma(n+1) \tag{7}
\end{equation*}
$$

where $\zeta(z)$ is the Riemann zeta function and $\Gamma(n+1)=n$! (for integer n) is the gamma function. For bosons, we immediately get the result

$$
\begin{equation*}
n_{\mathrm{Bosons}}=\frac{g \zeta(3) T^{3}}{\pi^{2}} \tag{8}
\end{equation*}
$$

For fermions, we can also use the above result once we notice that

$$
\begin{equation*}
\frac{1}{e^{x}+1}=\frac{1}{e^{x}-1}-\frac{2}{e^{2 x}-1} \tag{9}
\end{equation*}
$$

which allows us to write

$$
\begin{align*}
\int_{0}^{\infty} d x \frac{x^{2}}{e^{x}+1} & =\int_{0}^{\infty} d x\left[\frac{x^{2}}{e^{x}-1}-\frac{2 x^{2}}{e^{2 x}-1}\right] \\
& =2 \zeta(3)-2 \int_{0}^{\infty} \frac{d y}{2} \frac{(y / 2)^{2}}{e^{y}-1} \\
& =2 \zeta(3)\left(1-\frac{1}{4}\right) \\
& =2 \zeta(3) \frac{3}{4} \tag{10}
\end{align*}
$$

For fermions, we thus get

$$
\begin{equation*}
n_{\text {Fermions }}=\frac{3}{4} \frac{g \zeta(3) T^{3}}{\pi^{2}} \tag{11}
\end{equation*}
$$

We thus obtain the general behavior that $n \propto T^{3}$ for a species in thermal equilibrium. For example, the number density of CMB photons today ($g=2$ for the two polarization, $T_{0}=2.725 \mathrm{~K}=2.348 \times 10^{-4} \mathrm{eV}$) is given by

$$
\begin{equation*}
n_{\gamma}\left(t_{0}\right)=\frac{2 \zeta(3) T_{0}^{3}}{\pi^{2}} \simeq 410 \text { photons } / \mathrm{cm}^{3} \tag{12}
\end{equation*}
$$

where we have used $\hbar c=1.97 \times 10^{-5} \mathrm{eV} \mathrm{cm}$.

B. Energy density

Using $E(p)=p$, the energy density takes the form

$$
\begin{align*}
\rho & =g \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p}{e^{p / T} \pm 1} \\
& =\frac{g}{2 \pi^{2}} \int_{0}^{\infty} d p \frac{p^{3}}{e^{p / T} \pm 1} \\
& =\frac{g T^{4}}{2 \pi^{2}} \int_{0}^{\infty} d x \frac{x^{3}}{e^{x} \pm 1} \tag{13}
\end{align*}
$$

where we have defined $x=p / T$. For bosons, we can directly used the result from Eq. (7) to obtain

$$
\begin{equation*}
\rho_{\text {Bosons }}=3!\frac{g T^{4}}{2 \pi^{2}} \zeta(4)=3 \frac{g T^{4}}{\pi^{2}} \frac{\pi^{4}}{90}=g \frac{\pi^{2}}{30} T^{4} \tag{14}
\end{equation*}
$$

where we have used the fact that $\zeta(4)=\pi^{4} / 90$. For fermions, we use the same trick as in Eq. (9), which allows us to write

$$
\begin{align*}
\int_{0}^{\infty} d x \frac{x^{3}}{e^{x}+1} & =\int_{0}^{\infty} d x\left[\frac{x^{3}}{e^{x}-1}-\frac{2 x^{3}}{e^{2 x}-1}\right] \\
& =3!\zeta(4)-2 \int_{0}^{\infty} \frac{d y}{2} \frac{(y / 2)^{3}}{e^{y}-1} \\
& =6 \frac{\pi^{4}}{90}-\frac{1}{8} 6 \frac{\pi^{4}}{90} \\
& =2 \frac{7}{8} \frac{\pi^{4}}{30} \tag{15}
\end{align*}
$$

Thus, for fermions the energy density is

$$
\begin{equation*}
\rho_{\text {Fermions }}=g \frac{7}{8} \frac{\pi^{2}}{30} T^{4} . \tag{16}
\end{equation*}
$$

We this obtain the general behavior that $\rho \propto T^{4}$ for a species in thermal equilibrium. At the same temperature, a fermionic species has an energy density that is suppressed by a factor of $7 / 8$ compared to a similar bosonic gas.

For example, the energy density in CMB photons today is

$$
\begin{equation*}
\rho_{\gamma}\left(t_{0}\right)=2 \frac{\pi^{2}}{30} T_{0}^{4}=\frac{\pi^{2}}{15} T_{0}^{4}=2.0 \times 10^{-15} \mathrm{eV}^{4} \tag{17}
\end{equation*}
$$

Dividing this by the critical density of the Universe today $\rho_{\mathrm{c}}=3 H_{0}^{2} /(8 \pi G)=8.098 h^{2} \times 10^{-11} \mathrm{eV}^{4}$, we get

$$
\begin{equation*}
\Omega_{\gamma}=\frac{\rho_{\gamma}\left(t_{0}\right)}{\rho_{\mathrm{c}}}=2.47 \times 10^{-5} h^{-2}, \tag{18}
\end{equation*}
$$

which is the number we quoted before. Here, h is the reduced Hubble rate $h=H_{0} /(100 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc})$.

C. Pressure

Using $E(p)=p$, the pressure takes the form

$$
\begin{equation*}
P=g \int \frac{d^{3} p}{(2 \pi)^{3}} f(p) \frac{p}{3}=\frac{1}{3} g \int \frac{d^{3} p}{(2 \pi)^{3}} f(p) p=\frac{\rho}{3}, \tag{19}
\end{equation*}
$$

that is, we just retrieve the standard equation of state for relativistic particles $w=P / \rho=1 / 3$.

