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I. NUMBER DENSITY, ENERGY DENSITY, AND PRESSURE

Last time, we introduced the number density

n(t) = g

∫
d3p

(2π)3
f(p, t), (1)

which is the number of particle of a given species per unit volume. Here, f(p, t) is the particle distribution function,
and g is the number of internal degrees of freedom. Remember that we have set ~ = 1 here. We also introduced the
energy density

ρ(t) = g

∫
d3p

(2π)3
f(p, t)E(p). (2)

where E(p) =
√
p2 +m2 is the energy. In the above, we have assumed that the particles are essentially free, that

is, that we can neglect the interaction energies between the particles. This is usually a very good approximation in
cosmology. Meanwhile, the pressure P was given by

P (t) = g

∫
d3p

(2π)3
f(p, t)

p2

3E(p)
. (3)

We also discussed that if a particle species is in kinetic equilibrium (i.e. particles are able to efficiently exchange
energy and momentum), then the particle distribution function takes either a Fermi-Dirac or Bose-Einstein form

f(p) =
1

e(E(p)−µ)/T ± 1
, (4)

where the + sign is for fermions (half-integer spin) and the − sign for bosons (integer spin). Here, µ is the chemical
potential and T is the temperature. Here, we have set the Boltzmann constant kB = 1, meaning that we are measuring
temperature in units of energy (eV, say). In cosmology, if a species has a nonzero chemical potential, it means that the
number of particles and of the corresponding anti-particles are different. For a particle species X and its anti-particle
X̄, we generally have

µX = −µX̄ . (5)

II. RELATIVISTIC LIMIT

A. Number density

Let us first consider the relativistic limit p� m, such that E ' p. Here, we set the chemical potential to zero. The
number density is then given by

n = g

∫
d3p

(2π)3

1

ep/T ± 1

=
g

2π2

∫ ∞
0

dp
p2

ep/T ± 1

=
gT 3

2π2

∫ ∞
0

dx
x2

ex ± 1
, (6)

where we have changed the variable to x = p/T . We can now use the known result that∫ ∞
0

dx
xn

ex − 1
= ζ(n+ 1)Γ(n+ 1), (7)
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where ζ(z) is the Riemann zeta function and Γ(n + 1) = n! (for integer n) is the gamma function. For bosons, we
immediately get the result

nBosons =
gζ(3)T 3

π2
. (8)

For fermions, we can also use the above result once we notice that

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
, (9)

which allows us to write ∫ ∞
0

dx
x2

ex + 1
=

∫ ∞
0

dx

[
x2

ex − 1
− 2x2

e2x − 1

]
= 2ζ(3)− 2

∫ ∞
0

dy

2

(y/2)2

ey − 1

= 2ζ(3)

(
1− 1

4

)
= 2ζ(3)

3

4
. (10)

For fermions, we thus get

nFermions =
3

4

gζ(3)T 3

π2
. (11)

We thus obtain the general behavior that n ∝ T 3 for a species in thermal equilibrium. For example, the number
density of CMB photons today (g = 2 for the two polarization, T0 = 2.725K = 2.348× 10−4 eV) is given by

nγ(t0) =
2ζ(3)T 3

0

π2
' 410 photons/cm

3
, (12)

where we have used ~c = 1.97× 10−5 eV cm.

B. Energy density

Using E(p) = p, the energy density takes the form

ρ = g

∫
d3p

(2π)3

p

ep/T ± 1

=
g

2π2

∫ ∞
0

dp
p3

ep/T ± 1

=
gT 4

2π2

∫ ∞
0

dx
x3

ex ± 1
, (13)

where we have defined x = p/T . For bosons, we can directly used the result from Eq. (7) to obtain

ρBosons = 3!
gT 4

2π2
ζ(4) = 3

gT 4

π2

π4

90
= g

π2

30
T 4, (14)

where we have used the fact that ζ(4) = π4/90. For fermions, we use the same trick as in Eq. (9), which allows us to
write ∫ ∞

0

dx
x3

ex + 1
=

∫ ∞
0

dx

[
x3

ex − 1
− 2x3

e2x − 1

]
= 3!ζ(4)− 2

∫ ∞
0

dy

2

(y/2)3

ey − 1

= 6
π4

90
− 1

8
6
π4

90

= 2
7

8

π4

30
. (15)
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Thus, for fermions the energy density is

ρFermions = g
7

8

π2

30
T 4. (16)

We this obtain the general behavior that ρ ∝ T 4 for a species in thermal equilibrium. At the same temperature, a
fermionic species has an energy density that is suppressed by a factor of 7/8 compared to a similar bosonic gas.

For example, the energy density in CMB photons today is

ργ(t0) = 2
π2

30
T 4

0 =
π2

15
T 4

0 = 2.0× 10−15 eV4. (17)

Dividing this by the critical density of the Universe today ρc = 3H2
0/(8πG) = 8.098h2 × 10−11 eV4, we get

Ωγ =
ργ(t0)

ρc
= 2.47× 10−5h−2, (18)

which is the number we quoted before. Here, h is the reduced Hubble rate h = H0/(100 km/s/Mpc).

C. Pressure

Using E(p) = p, the pressure takes the form

P = g

∫
d3p

(2π)3
f(p)

p

3
=

1

3
g

∫
d3p

(2π)3
f(p)p =

ρ

3
, (19)

that is, we just retrieve the standard equation of state for relativistic particles w = P/ρ = 1/3.


