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I. NUMBER DENSITY, ENERGY DENSITY, AND PRESSURE

Last time, we introduced the number density
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which is the number of particle of a given species per unit volume. Here, f(p,t) is the particle distribution function,
and g is the number of internal degrees of freedom. Remember that we have set A = 1 here. We also introduced the
energy density
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where E(p) = /p? + m? is the energy. In the above, we have assumed that the particles are essentially free, that
is, that we can neglect the interaction energies between the particles. This is usually a very good approximation in
cosmology. Meanwhile, the pressure P was given by
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We also discussed that if a particle species is in kinetic equilibrium (i.e. particles are able to efficiently exchange
energy and momentum), then the particle distribution function takes either a Fermi-Dirac or Bose-FEinstein form
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where the + sign is for fermions (half-integer spin) and the — sign for bosons (integer spin). Here, u is the chemical
potential and T is the temperature. Here, we have set the Boltzmann constant kg = 1, meaning that we are measuring

temperature in units of energy (eV, say). In cosmology, if a species has a nonzero chemical potential, it means that the
number of particles and of the corresponding anti-particles are different. For a particle species X and its anti-particle

X, we generally have
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II. RELATIVISTIC LIMIT
A. Number density

Let us first consider the relativistic limit p > m, such that F ~ p. Here, we set the chemical potential to zero. The
number density is then given by
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where we have changed the variable to = p/T. We can now use the known result that
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where ((z) is the Riemann zeta function and I'(n + 1) = n! (for integer n) is the gamma function. For bosons, we
immediately get the result
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For fermions, we can also use the above result once we notice that
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which allows us to write
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For fermions, we thus get
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We thus obtain the general behavior that n oc T2 for a species in thermal equilibrium. For example, the number
density of CMB photons today (g = 2 for the two polarization, Ty = 2.725K = 2.348 x 10~% eV) is given by
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where we have used fic = 1.97 x 10~° eV cm.

B. Energy density

Using E(p) = p, the energy density takes the form
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where we have defined x = p/T. For bosons, we can directly used the result from Eq. (7) to obtain
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where we have used the fact that ((4) = 7%/90. For fermions, we use the same trick as in Eq. (9), which allows us to

write
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Thus, for fermions the energy density is
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We this obtain the general behavior that p oc T for a species in thermal equilibrium. At the same temperature, a
fermionic species has an energy density that is suppressed by a factor of 7/8 compared to a similar bosonic gas.
For example, the energy density in CMB photons today is
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Dividing this by the critical density of the Universe today p. = 3HZ/(87G) = 8.098h% x 10~ eV*, we get
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which is the number we quoted before. Here, h is the reduced Hubble rate h = Hy/(100 km/s/Mpc).

C. Pressure

Using E(p) = p, the pressure takes the form
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that is, we just retrieve the standard equation of state for relativistic particles w = P/p = 1/3.



