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where in the second equality we have used natural units with ~ = h/(2⇡) ⌘ 1. To obtain the

number density of a gas of particles we need to know how the particles are distributed amongst

the momentum eigenstates. This information is contained in the (phase space) distribution func-

tion f(x,p, t). Because of homogeneity, the distribution function should, in fact, be independent

of the position x. Moreover, isotropy requires that the momentum dependence is only in terms of

the magnitude of the momentum p ⌘ |p|. We will typically leave the time dependence implicit—

it will manifest itself in terms of the temperature dependence of the distribution functions. The

particle density in phase space is then the density of states times the distribution function

g

(2⇡)3
⇥ f(p) . (3.2.14)

The number density of particles (in real space) is found by integrating (3.2.14) over momentum,

n =
g

(2⇡)3

Z
d3p f(p) . (3.2.15)

To obtain the energy density of the gas of particles, we have to weight each momentum eigen-

state by its energy. To a good approximation, the particles in the early universe were weakly

interacting. This allows us to ignore the interaction energies between the particles and write the

energy of a particle of mass m and momentum p simply as

E(p) =
p
m2 + p2 . (3.2.16)

Integrating the product of (3.2.16) and (3.2.14) over momentum then gives the energy density
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Similarly, we define the pressure as
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Pressure.⇤—Let me remind you where the p2/3E factor in (3.2.18) comes from. Consider a small area
element of size dA, with unit normal vector n̂ (see Fig. 3.3). All particles with velocity |v|, striking
this area element in the time interval between t and t+dt, were located at t = 0 in a spherical shell of
radius R = |v|t and width |v|dt. A solid angle d⌦2 of this shell defines the volume dV = R

2|v|dt d⌦2

(see the grey shaded region in Fig. 3.3). Multiplying the phase space density (3.2.14) by dV gives
the number of particles in the volume (per unit volume in momentum space) with energy E(|v|),

dN =
g
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f(E)⇥R

2|v|dt d⌦ . (3.2.19)

Not all particles in dV reach the target, only those with velocities directed to the area element.
Taking into account the isotropy of the velocity distribution, we find that the total number of
particles striking the area element dA n̂ with velocity v = |v| v̂ is

dNA =
|v̂ · n̂| dA
4⇡R2
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where v · n̂ < 0. If these particles are reflected elastically, each transfer momentum 2|p · n̂| to the
target. Hence, the contribution of particles with velocity |v| to the pressure is

dP (|v|) =
Z
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dA dt
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where we have used |v| = |p|/E and integrated over the hemisphere defined by v̂ · n̂ ⌘ � cos ✓ < 0
(i.e. integrating only over particles moving towards dA—see Fig. 3.3). Integrating over energy E (or
momentum p), we obtain (3.2.18).

Figure 3.3: Pressure in a weakly interacting gas of particles.

Local Thermal Equilibrium

A system of particles is said to be in kinetic equilibrium if the particles exchange energy and

momentum e�ciently. This leads to a state of maximum entropy in which the distribution

functions are given by the Fermi-Dirac and Bose-Einstein distributions

f(p) =
1

e(E(p)�µ)/T ± 1
, (3.2.22)

where the + sign is for fermions and the � sign for bosons. At low temperatures, T < E � µ,

both distribution functions reduce to the Maxwell-Boltzmann distribution

f(p) ⇡ e
�(E(p)�µ)/T

. (3.2.23)

The equilibrium distribution functions have two parameters: the temperature T and the chemical

potential µ. The chemical potential may be temperature-dependent. As the universe expands,

T and µ(T ) change in such a way that the continuity equations for the energy density ⇢ and the

particle number density n are satisfied. Each particle species i (with possibly distinct mi, µi,

Ti) has its own distribution function fi and hence its own ni, ⇢i, and Pi.

Chemical potential.⇤—In thermodynamics, the chemical potential characterizes the response of a
system to a change in particle number. Specifically, it is defined as the derivative of the entropy with
respect to the number of particles, at fixed energy and fixed volume,
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. (3.2.24)

The change in entropy of a system therefore is

dS =
dU + PdV � µdN

T
, (3.2.25)


