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I. THE COSMOLOGICAL PRINCIPLE AND THE METRIC

So far, we have argued that the large-scale homogeneity and isotropy embedded in the Cosmological Principle
determine the form of the spacetime metric to be

ds2 = −dt2 + a(t)2
[
dχ2 + S2

k(χ)dΩ2
]
, (1)

where the spatial coordinates are comoving, a(t) is the scale factor describing the expansion, and where

Sk(χ) =


1√

ΩKH0
sinh (

√
ΩKH0χ) if ΩK > 0,

χ if ΩK = 0,
1√
|ΩK |H0

sin (
√
|ΩK |H0χ) if ΩK < 0.

(2)

This metric is very important as it allows us to measure physical distances in the constantly changing expanding
Universe. The three cases for the function Sk(χ) corresponds to the three possible global spatial geometries allowed
by the Cosmological Principle: either open (hyperbolic), flat, or closed (spherical) geometries. These are the only
possibilities for geometries that have constant curvature (including a vanishing one) everywhere.

II. THE FRIEDMANN EQUATION

The evolution of the scale factor a(t) is given by the Friedmann equation, which always relates the energy content
of the Universe to the Hubble rate of expansion H ≡ ȧ/a. Written in terms of the density parameters Ωi ≡ ρi(t0)/ρc,
where ρc = 3H2

0/(8πG), it takes the form

H2(z) = H2
0

[
Ωrad(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ

]
, (3)

where we have written the scale factor as

a =
1

1 + z
, (4)

where z is redshift, and where have assumed a universe populated by radiation (Ωrad), matter (Ωm), and dark energy
(ΩΛ), while allowing for the presence of spatial curvature (ΩK). Remember that we have the constraint

ΩK = 1−
∑
i

Ωi, (5)

where the sum includes everything except for the curvature term. The different scaling with redshift appearing in the
Friedmann equation were gotten by solving the fluid equation

ρ̇+ 3H(ρ+ p) = 0 (6)

for components with constant equation of state w = p/ρ. This lead to a solution of the form ρ ∝ a−3(1+w), which for
matter (w = 0) gives ρm ∝ a−3, for radiation (w = 1/3) ρrad ∝ a−4, and for dark energy (w = −1) ρΛ ∝ const. We
have seen that the radiation budget of the Universe is dominated by photons and relativistic neutrinos, with potential
small contributions from massless particles beyond the Standard Model. The matter budget is dominated by dark
matter, with a small contributions from baryons, and an even smaller contribution from massive neutrinos at late
times.
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III. AGES AND DISTANCES

The age of the Universe at a given value of the scale factor (or redshift) is given by

t(a) =

∫ t

0

dt′ =

∫ a

0

da′

a′H(a′)
=

∫ ∞
z(a)

dz′

(1 + z′)H(z′)
. (7)

These ages are always proportional to the Hubble time tH = 1/H0. A very important distance in our expanding
Universe is the comoving distance that a photon has travelled from some time of emission in the past to today. Since
photons always travel on null paths (ds2 = 0), that distance is

χ(a) =

∫ t0

t(a)

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
=

∫ z(a)

0

dz′

H(z′)
. (8)

Note that this χ is the same χ coordinate appearing in Eq. (1). In our Universe, we have two main ways of measuring
distances. First, if we happen to know the physical size l of some object or feature in the sky and can measure its
apparent angular size θ and its redshift with observations, we can extract the angular diameter distance

dA(z) =
l

θ
. (9)

The nice thing is that this observed distance can be compared to its theoretical prediction within any cosmological
model, which is given by

dA(z) =
Sk(χ(z))

1 + z
, (10)

with χ given by Eq. (8) above. For a spatially flat cosmology (ΩK = 0), this is simply dA(z) = χ(z)/(1 + z). Another
way to measure distances is to measure the apparent magnitude m and redshift z of a source of known intrinsic
luminosity (absolute magnitude M). Its luminosity distance is then given by

dL(z) = 10
m−M−25

5 Mpc. (11)

This measurement can then be compared with the theoretical prediction for the luminosity distance in any cosmological
model, which is given

dL(z) = (1 + z)Sk(χ(z)). (12)

For a spatially flat cosmology (ΩK = 0), this is simply dL(z) = (1 + z)χ(z).

IV. DECELERATION PARAMETER

When probing the local Universe, it is sometime useful to consider the Taylor expansion of the scale factor a(t)

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)2 + . . . . (13)

Dividing by a(t0), we obtain

a(t)

a(t0)
= 1 +H0(t− t0)− q0

2
H2

0 (t− t0)2 + . . . , (14)

where we have defined

q0 ≡ −
ä(t0)

a(t0)H2
0

= − ä(t0)a(t0)

ȧ2(t0)
, (15)

which is called the deceleration parameter. It is dimensionless. Before the discovery of dark energy, most astrophysi-
cists believed that the universe was decelerating, so the sign convention was chosen such that a universe that is slowing
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down would have q0 > 0. Since our Universe appears to be accelerating, we are now stuck with a negative q0! In any
case, in simple cosmologies, q0 admits simple values so it is a useful parameters to consider.

To compute q0, we need to determine a value for ä(t). Taking a time derivative of the Friedmann equation and
using the fluid equation, we obtain (see worksheet) the acceleration equation

ä

a
= −4πG

3
(ρ+ 3p) , (16)

where ρ and p are the total energy density and pressure of the universe. Thus, to have an accelerating universe
(ä > 0), we need to have ρ+ 3p < 0, that is,

w < −1/3. (17)

A universe with just a cosmological constant (w = −1) is obviously satisfying this bound, but even a universe with,
say, w = −1/2, would result in an accelerating universe today.

Equipped with the acceleration equation, we can compute the value of q0 in different Universes. For example, in a
matter dominated Universe, the deceleration parameter is

q0 =
4πG

3H2
0

ρm(t0) =
1

2

8πG

3H2
0

ρm(t0) =
1

2

ρm(t0)

ρc
=

Ωm

2
. (18)


