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I. THE FLAT FRIEDMANN-LEMAÎTRE-ROBERTRON-WALKER (FLRW) METRIC

We need our spacetime metric describing our Universe to reflect the cosmological principle, which states that the
Universe is, on average, homogeneous (in space) and isotropic. Since three-dimensional Euclidean space is homoge-
neous and isotropic, we only need a small modification to the Minkowski metric to describe a smooth, expanding
Universe. Using spatial cartesian coordinates (which are orthogonal), the most general metric we can write down is

ds2 = −f(t, x, y, z)dt2 + g(t, x, y, z)dx2 + h(t, x, y, z)dy2 + l(t, x, y, z)dz2, (1)

where f, g, h, l are arbitrary functions at this point. The cosmological principle puts strong constraints on these
functions. Let’s start by considering isotropy. An isotropic universe does not have any preferred direction, which
means that moving in the x, y, or z direction should be completely equivalent. The only way to enforce this is to
have f = g = h, that is

ds2 = −f(t, x, y, z)dt2 + g(t, x, y, z)
(
dx2 + dy2 + dz2

)
. (2)

As we will see in a few lectures, this is a little too restrictive. But the above is valid when we have spatially flat
(Euclidean) three-dimensional geometry. Now considering homogeneity, which states that there is no special point in
the Universe, we must have f = f(t) and g = g(t) only. That is f and g cannot depends on the coordinates x, y, z. It
is customary to denote the function g as a2(t). We are thus left with

ds2 = −f(t)dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (3)

As with any coordinate system, we are always free to redefine our coordinates. For instance, it is customary to let√
f(t)dt→ dt, that is, absorb the function f into the definition of our time coordinate. With this, we obtain the flat

Friedmann-Lemâıtre-Robertron-Walker metric, written in cartesian coordinates

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (4)
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Figure 1.3: Expansion of the universe. The comoving distance between points on an imaginary coordinate

grid remains constant as the universe expands. The physical distance is proportional to the comoving

distance times the scale factor a(t) and hence gets larger as time evolves.

• The coordinate r is called a comoving coordinate. Physical results depend only on the

physical coordinate rphys = a(t)r (see Fig. 1.3). The physical velocity of an object is

vphys ⌘
drphys

dt
= a(t)

dr

dt
+

da

dt
r ⌘ vpec + Hrphys . (1.1.19)

We see that this has two contributions: the so-called peculiar velocity, vpec ⌘ a(t) ṙ, and

the Hubble flow, Hrphys, where we have defined the Hubble parameter as 5

H ⌘ ȧ

a
. (1.1.20)

The peculiar velocity of an object is the velocity measured by a comoving observer (i.e. an

observer who follows the Hubble flow).

• The complicated grr component of (1.1.17) can sometimes be inconvenient. In that case,

we may redefine the radial coordinate, d� ⌘ dr/
p

1 � kr2, such that

ds2 = dt2 � a2(t)
⇥
d�2 + S2

k(�) d⌦2
⇤
, (1.1.21)
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. (1.1.22)

• It is also often useful to introduce conformal time,

d⌘ =
dt

a(t)
, (1.1.23)

so that (1.1.21) becomes

ds2 = a2(⌘)
h
d⌘2 �

�
d�2 + S2

k(�)d⌦2
�i

. (1.1.24)

We see that the metric has factorized into a static metric multiplied by a time-dependent

conformal factor a(⌘). This form of the metric is particularly convenient for studying the

propagation of light.
5Here, and in the following, an overdot denotes a time derivative, i.e. ȧ ⌘ da/dt.

FIG. 1. The comoving distance between points on an imaginary coordinate grid remains constant as the universe expands.
The physical distance is proportional to the comoving distance times the scale factor a(t) and hence gets larger as time evolves.
Image credits: D. Baumann.
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Here, the spatial coordinates (x, y, z) are called comoving coordinates. These coordinates form a fixed grid on which
the coordinate distance between any point is always the same. However, the physical distance between points is
modulated by a(t) (see Fig. 1), which in our Universe, is an increasing function of time, as we will see. Objects
separated by a fixed comoving distance rcom have a physical separation rphys given by

rphys(t) = a(t)rcom. (5)

It is customary to define a(t0) = 1, where t0 denotes the present time. This means that today we have rphys = rcom.
With this convention, when we quote the comoving distance to an object, it corresponds to its physical distance today.
If a(t) is an increasing function of time (as it is in our Universe), then a(t) < 1 for t < t0, and objects at a fixed
comoving distance were closer to us in the past.

The function a(t) is called the scale factor, as it tells us how physical distances evolve as a function of time in our
Universe.

II. THE LINE ELEMENT,HE LIGHT-CONE, AND PROPER TIME.

The four-dimensional line element ds2 is a physical quantity that any observer, in any inertial frame of reference,
will agree on. In general, there are three types of ds2 element that we can have:

1. ds2 < 0: This is a timelike interval. Causally related events are always separated by a timelike interval.

2. ds2 = 0: This is a null (or lightlike) interval. Particle moving at the speed of light (like photons) always move
on null paths.

3. ds2 > 0: This is a spacelike interval. No causally related events can be separated by a spacelike interval.

The spacetime element ds2 is also important since it can be used to compute the time that any observer will
measure on their watch as they move through spacetime. This elapsed time, called the proper time is simply given
by dτ =

√
−ds2.


