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I. GROWTH OF STRUCTURE IN AN EXPANDING UNIVERSE

Last time, we saw that non-relativistic matter fluctuations δm in an expanding Universe evolve according to the
following equation

δ̈m + 2Hδ̇m −∇2Φ = 0, (1)

where H = ȧ/a is the Hubble rate and Φ is the gravitational potential. An overhead dot denotes a (coordinate) time
derivative. During radiation domination, we argued that Φ ∼ 0 since it is impossible to form gravitationally bound
structures out of radiation. This meant that the growing solution to the above equation in radiation domination is
δm ∝ ln a. Thus, dark matter can start forming structure (albeit slowly) even during radiation domination. This
gives structure formation a head start that is very important in explaining the amount of structure we observe in the
Universe today.

A. Matter domination

While matter structure can slowly grow during radiation domination, most of the growth of structure in our Universe
occurs during matter domination. For the purpose of this discussion, we will focus our attention entirely on dark
matter and neglect the (relatively small) amount of baryons in the Universe. This simplification sidesteps the question
of the changing baryonic pressure support, which is significant before the epoch of recombination, but negligible after
that time.

Since matter can actually form gravitationally bound structures, the gravitational potential is not negligible during
matter domination. It obeys as usual the Poisson equation

∇2Φ = 4πGρ̄mδm, (2)

where ρ̄m is the mean matter density in the Universe (which scales as ρ̄m ∝ a−3). Substituting this in Eq. (1), we
obtain

δ̈m + 2Hδ̇m − 4πGρ̄mδm = 0, (3)

As you will show in the worksheet, the growing solution to this equation is δm ∝ a. This linear growth (in the
scale factor) is much faster than the logarithmic growth during radiation domination, and thus most of the growth of
structure in our Universe occurs during matter domination.

What about the gravitational potential during matter domination? Going back to Eq. (2) and substituting δm ∝ a
and ρ̄m ∝ a−3 in the right-hand side, we obtain

∇2Φ ∝ a−2. (4)

This seems to imply that the gravitational potential is time-dependent. However, the Laplacian operator ∇2 here is
written in physical coordinates. Remembering that physical and comoving coordinates are schematically related via

rphys(t) = a(t)rcom, (5)

where rcom is the comoving distance, we have that

∇2
com = a2∇2

phys, (6)

where ∇2
com is the Laplacian operator written in comoving coordinates, while ∇2

phys is the Laplacian in physical

coordinates. Using this, we can rewrite Eq. (2) as

∇2
comΦ = 4πGa2ρ̄mδm. (7)
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Substituting δm ∝ a and ρ̄m ∝ a−3 in the right-hand side, we now get

∇2
comΦ ∝ constant. (8)

This means that once written as a function of comoving coordinates, the gravitational potential is a constant function
of time (it can still vary in space).

The picture that thus emerges during matter domination is of dark matter fluctuations growing linearly with the
scale factor while the gravitational potential is constant in time. This is quite different than what happens during
radiation domination, where matter fluctuations grow logarithmically and the gravitational potential is essentially
vanishing. These different regimes are illustrated in Fig. 1 where we see the logarithmic growth during radiation
domination, and the linear growth during matter domination.
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Integrating again leads to the second Meszaros solution 

D2(y) = Z?i(y)ln yrri^ + i 
[y r r^ - i j 2yrT^. 

(7.61) 

(7.62) 

At late times (j/ ^ 1), the growing solution D\ scales as y while the decaying mode 
D2 falls off as y-3/2. 
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Figure 7.10. Evolution of small-scale, sub-horizon, dark matter perturbations. Solid curves 
are exact solutions; dashed curves (almost imperceptible because the goodness of fit in the 
10/i Mpc~' case) the Meszaros solution with coefficients given by the matching condition, 
Eq. (7.64). The dashed straight lines at a > 10~^ are the asymptotic solution of Eq. (7.67). 

The general solution to the Meszaros equation is therefore 

6{k,y) = CiD,{y) + C2D2{y) y :s> yH (7.63) 

where yn is the scale factor when the mode enters the horizon divided by the 
scale factor at equality (Exercise 6). To determine the constants Ci and C2 we can 
match on to the logarithmic solution of Eq. (7.51). That solution is valid within the 
horizon but before equality: z/// <C y <C 1. So we can hope to arrive at a reasonable 
approximation for the evolution of dark matter perturbations only for those modes 
that enter the horizon before equality. For those modes, we match the two solutions 
and their first derivatives 

A^p\n{Bym/yH) - CiD^{ym) + C2D2{ym) 

FIG. 1. Evolution of dark matter density fluctuations as a function of the scale factor (normalized to an arbitrary initial value
at a = 0) for two different spatial extents of fluctuations, characterized by their comoving wavenumber k. Focusing on the
mode with k = 10h Mpc−1, we see the logarithmic growth before matter-radiation equality (a < aeq) and the linear growth
emerging for a� aeq (the dashed line for large a show δDM ∝ a). Figure from Dodelson (2003).

B. Remarks

There are a few important remarks about our derivation of the different growth regime discussed above.

• The discussion presented here is only valid for δm � 1, that is, for small density fluctuations. This is because
first-order perturbation theory was used to derive equations like Eq. (1). For δm ∼ 1, other terms that we have
neglected here will become important and dramatically affect the evolution of δm. We say that the evolution
of δm enters the non-linear regime when δm approaches unity. While the linear regime discussed here is very
useful to describe the large-scale distribution of galaxies, it cannot be used to understand how a galactic dark
matter halo forms.

• The discussion above applies to fluctuations that have spatial extent L that are much smaller than the size of
the Hubble horizon, L� H−1. For fluctuations of size L ∼ H−1, the Poisson equation we used to describe the
gravitational potential no longer applies and other terms becomes important in describing of the gravitational
potential. Because of this, as the Hubble horizon expands and more and more fluctuation modes become causal,
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modes entering the horizon during radiation domination will not immediately follow the logarithmic solution;
there will be a transient behavior for some time before the fluctuation settle in the logarithmic solution. This
can be seen in Fig. 1 for the mode with wavenumber k = 1h Mpc−1.

• Close to matter-radiation equality, the Universe is neither completely dominated by radiation nor matter. This
means that there will be a transient period close to matter-radiation equality for which fluctuations are growing
faster than ln a but slower than linear in the scale factor. Obtaining the exact behavior is this regime requires
solving the differential for δm numerically.

• At very late times z . 0.5, dark energy becomes dynamically important and the Universe is no longer purely
matter dominated. Thus, matter fluctuations on large scales no longer growth linearly with the scale factor at
late times, but slightly slower. We will show in the homework that matter fluctuations start decaying during
dark energy domination.


