PHYS 480/581 Cosmology

Worksheet #20Wednesday 11/30/2022

Question 1.

Here, we want to show that dark matter fluctuations can grow proportionally to the scale factor a during matter domination, $\delta_{\rm m} \propto a$. The equation governing the evolution of such fluctuations is

$$\ddot{\delta}_{\rm m} + 2H\dot{\delta}_{\rm m} - 4\pi G\bar{\rho}_{\rm m}\delta_{\rm m} = 0,\tag{1}$$

where $H = \dot{a}/a$ is the Hubble expansion rate, and $\bar{\rho}_{\rm m}$ is the mean dark matter density.

(a) Show that if $\delta_m = Ca$ (where C is an arbitrary constant), then the above equation can be written as

$$\frac{\ddot{a}}{a} + 2H^2 - 4\pi G\bar{\rho}_{\rm m} = 0.$$
(2)

(b) Now use the acceleration and Friedmann equations during matter domination,

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\bar{\rho}_{\rm m} + 3P_{\rm m}\right), \quad \text{and} \quad H^2 = \frac{8\pi G}{3} \bar{\rho}_{\rm m},$$
(3)

to show that $\delta_{\rm m} = Ca$ is indeed a solution to Eq. (1). Remember to use the matter equation of state to determine $P_{\rm m}$.

This thus shows that cold dark matter fluctuations can grow rapidly during matter domination