PHYS 480/581
 Cosmology

Worksheet \#7
Wednesday 09/14/2022

Question 1.

In the following, express the different ages as functions of the Hubble time, $1 / H_{0}$.
(a) Compute the age of a flat $(k=0)$ universe entirely dominated by matter $\left(\Omega_{\mathrm{m}}=1\right.$, all other density parameters are zero).
(b) Compute the age of a flat $(k=0)$ Universe with $\Omega_{\mathrm{m}}=0.3$ and $\Omega_{\Lambda}=0.7$. You can do the integral numerically if you want, although it also has an analytical solution (see below). Is this Universe younger or older than the purely matter-dominated universe of part (a)?
(c) Compute the age of a curved matter-dominated universe with $\Omega_{\mathrm{m}}=0.9$ and $\Omega_{K}=0.1$? You can Taylor expand the integrand to perform the integral. Is this universe younger or older than a purely matter-dominated flat $(k=0)$ universe?

Hint: you may find this integral useful:

$$
\begin{equation*}
\int_{0}^{1} \frac{\sqrt{x}}{\sqrt{1+b x^{3}}} d x=\frac{2}{3 \sqrt{b}} \sinh ^{-1}(\sqrt{b}) \tag{1}
\end{equation*}
$$

\square

