PHYS 480/581 Cosmology

Homework Assignment 3 Due date: Monday October 24 2022, in class

Question 1 (8 points).

Consider the exact expression for the number density of a fermion of mass m in thermal equilibrium with zero chemical potential

$$n = g \int \frac{d^3 p}{(2\pi)^3} \frac{1}{e^{\sqrt{p^2 + m^2/T}} + 1}.$$
(1)

(a) Using x = p/T and y = m/T, show that the above can be rewritten in the following form

$$\frac{n(y)}{T^3} = \frac{g}{2\pi^2} \int_0^\infty dx \, \frac{x^2}{e^{\sqrt{x^2 + y^2}} + 1} \tag{2}$$

- (b) Using numerical integration and a plotting software of your choice, plot $n(y)/T^3$ as a function of y = m/T. Assume that g = 2 (like for an electron). Clearly label your axes.
- (c) Now, add to your plot both the relativistic $(y \ll 1)$ and non-relativistic $(y \gg 1)$ limit for the number density of this fermion that we derived in class. Remember to convert them to functions of y, and plot $n(y)/T^3$ for those too. Confirm that these results match the exact result plotted in part (b) in the appropriate limit.

Question 2 (6 points).

When the chemical potential μ of a given species vanishes, the numbers of particles (n) and antiparticles (\bar{n}) of that species in the cosmic plasma are equal. However, the presence of $\mu \neq 0$ results in a net particle number density, $n - \bar{n} \neq 0$.

(a) For relativistic fermions with $\mu \neq 0$ and $T \gg m$, show that

$$n - \bar{n} = \frac{g}{2\pi^2} \int_0^\infty dp \, p^2 \left(\frac{1}{e^{(p-\mu)/T} + 1} - \frac{1}{e^{(p+\mu)/T} + 1} \right)$$
$$= \frac{g}{6\pi^2} T^3 \left[\pi^2 \left(\frac{\mu}{T} \right) + \left(\frac{\mu}{T} \right)^3 \right].$$
(3)

Note that this is an exact result in the relativistic limit and not a truncated series.

(b) Now, let's apply the above result to electrons and positrons in their relativistic limit ($T \gg 1$ MeV). Electric charge neutrality in the early Universe implies that $n_{\rm p} = n_{\rm e} - \bar{n}_{\rm e}$, where $n_{\rm p}$ is the number density of protons. Use this to show that, in the early Universe, we have

$$\frac{\mu_{\rm e}}{T} \simeq \frac{3\eta_{\rm b}\zeta(3)}{\pi^2},\tag{4}$$

where $\eta_{\rm b} \equiv n_{\rm b}/n_{\gamma}$ is the baryon-to-photon ratio, with $n_{\rm b}$ and n_{γ} being the baryon and photon number densities, respectively. *Hint: relate the proton number density to the baryon number density. Do not forget the presence of neutrons. What is the relative abundance of neutrons and protons for* $T \gg 1$ *MeV*?

Question 3 (6 points).

As we discussed in class, cosmological neutrinos are slightly colder than cosmic microwave background photons today with

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}.\tag{5}$$

where T_{ν} is the neutrino temperature, and T_{γ} is the photon temperature.

(a) Show that the combined number density of one generation of neutrinos and anti-neutrinos in the Universe today is

γ

$$n_{\nu} = \frac{3}{11} n_{\gamma},\tag{6}$$

where n_{γ} is the number density of photons today.

(b) Use the above result to show that the contribution from all species of non-relativistic massive neutrinos to the critical density of the Universe today is given by

$$\Omega_{\nu}h^2 = \frac{\sum_i m_{\nu,i}}{94 \,\mathrm{eV}},\tag{7}$$

where h is the reduced Hubble rate, and $\sum_{i} m_{\nu,i}$ denotes the sum of neutrinos masses, summed over all neutrino species.

Question 4 (8 points).

If the neutrinos were massless in our Universe, the relative energy density of neutrinos as compared to that of photons would be constant for $T \lesssim 1$ MeV, that is, $\rho_{\nu}/\rho_{\gamma} = \text{constant}$.

- (a) Assuming that all three neutrino species present in our Universe are massless, compute the ratio ρ_{ν}/ρ_{γ} for $T \leq 1$ MeV. Remember that $T_{\nu} = (4/11)^{1/3} T_{\gamma}$.
- (b) In the real Universe, we know that at least two neutrino species have non-vanishing masses. A realistic model compatible with the results of neutrino oscillation experiments is to have one massless neutrino $(m_1 = 0)$, a second one with mass $m_2 = 0.010$ eV, and a third one with mass $m_3 = 0.050$ eV. Compute the ratio $\rho_{\nu}(z)/\rho_{\gamma}(z)$ in this scenario over the redshift range $0 \le z \le 10^3$ and plot it using your favorite plotting package. Clearly label your axes. Add the constant line you found in part (a) to your plot as a comparison. Note that since massive neutrinos always decouple from the cosmic plasma while ultra-relativistic, their energy density (for one species) is given by

$$\rho_{\nu} = g \int \frac{d^3 p}{(2\pi)^3} \frac{\sqrt{p^2 + m_{\nu}^2}}{e^{p/T_{\nu}} + 1}.$$
(8)