
PHYS 480/581 - Solutions of Homework 3

Q1

a)

By integrating the angular parts of the integral and changing variables, we

find

n =
g

2π2

∫ ∞
0

p2

e
√
p2+m2/T + 1

dp (1)

=
g

2π2

∫ ∞
0

x2T 3

e
√
x2+y2 + 1

dx (2)

⇒ n(y)

T 3
=

g

2π2

∫ ∞
0

x2

e
√
x2+y2 + 1

dx (3)

b)

The function n(y)/T for g = 2 is plotted in Fig. 1.
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Figure 1: n(y)/T 3 as a function of y for g = 2.

1



c)

Recall that in the relativistic limit (y << 1) we have

n(y)

T 3
=
ξ(3)

π2
g

3

4
=

3ξ(3)

2π2
(4)

where ξ(3) ≈ 1.202.

In the non-relativistic limit (y >> 1) we have

n(y)

T 3
=

g

(2π)3/2

(m
T

)3/2

e−m/T =
2

(2π)3/2
y3/2e−y (5)

So, we add these two curves in Fig. 2.
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Figure 2: Comparison between the exact number density with the relativistic
and non-relativistic limits.

We see that the results in the relativistic limit and non-relativistic limit

match the exact result in the appropriate regimes.

Q2

a)
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The number density of fermions is

n = g

∫
d3p

(2π)3

1

exp

(√
p2+m2−µ

T

)
+ 1

(6)

In the relativistic limit T >> m, we have

n− n̄ =
g

2π2

∫ ∞
0

dpp2

(
1

e(p−µ)/T + 1
− 1

e(p+µ)/T + 1

)
, (7)

where we performed the angular part of the integral with
∫
dΩ = 4π and

used the fact that µf̄ = −µf .
We will use several mathematical tricks to go to the final result. First,

set x = p/T and z = µ/T . So, we get

n− n̄ =
gT 3

2π2

∫ ∞
0

dxx2

(
1

ex−z + 1
− 1

ex+z + 1

)
(8)

Next, set u = x−z for the first integral and u = x+z for the second integral,

we get

n− n̄ =
gT 3

2π2

[∫ ∞
−z

du
(u+ z)2

eu + 1
−
∫ ∞
z

du
(u− z)2

eu + 1

]
=
gT 3

2π2

[∫ 0

−z
du

(u+ z)2

eu + 1
+

∫ ∞
0

du
(u+ z)2

eu + 1
−
∫ 0

z

du
(u− z)2

eu + 1
−
∫ ∞

0

du
(u− z)2

eu + 1

]
=
gT 3

2π2

[
−
∫ 0

z

du
(−u+ z)2

e−u + 1
−
∫ 0

z

du
(u− z)2

eu + 1
+

∫ ∞
0

du
4uz

eu + 1

]
=
gT 3

2π2

[∫ z

0

du(u− z)2

(
1

e−u + 1
+

1

eu + 1

)
+

∫ ∞
0

du
4uz

eu + 1

]
=
gT 3

2π2

[∫ z

0

du(u2 − 2uz + z2) + 4z

∫ ∞
0

du
u

eu + 1

]
=
gT 3

2π2

[
z3

3
− z3 + z3 + 4z

π2

12

]
=
gT 3

6π2

[
z3 + π2z

]
=
gT 3

6π2

[(µ
T

)3

+ π2
(µ
T

)]
.
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In the first line, we just replaced the dummy variable x by u. In the second

line, we just separate two integrals to four integrals. In the third line, we

rearranged some terms and switched the variable u→ −u in the first integral.

In the fourth line, we just rearranged some terms. In the fifth line, we realized

that 1
e−u+1

+ 1
eu+1

= 1. The rest is just doing some integrals and using the

fact that ∫ ∞
0

du
u

eu + 1
=
π2

12
.

b)

When T >> 1 MeV, the number densities of proton and neutron are equal be-

cause the exponential factor nn/np ∼ exp(−(mn−mp)/T ) ∼ exp(−1.3MeV/T )

approaches 1. (The proportional constant is (mn/mp)
3/2 and can be neglected

as it is very close to 1, too) . Baryons are mostly protons and neutrons. So,

we have

np = nn =
nb
2

=
1

2

nb
nγ
nγ =

1

2
ηbnγ =

ηb
2
× 2ξ(3)

π2
T 3 =

ξ(3)ηb
π2

T 3 (9)

where we used the fact that the number density of photons is nγ = 2ξ(3)T 3/π2.

Next, we note that the chemical potential of electron is µe ≈ me, so the

ratio µe/T is very small when T >> 1 MeV. So, the result in part a reduces

to

np ≈
T 3

3π2
π2
(µe
T

)
=
T 3

3

(µe
T

)
(10)

Note that g = 2 for electron. Compare equations 9 and 10, we get

µe
T
≈ 3ηbξ(3)

π2
. (11)

Q3

a)

Recall that the number density of relativistic particles is

n =
ξ(3)

π2
gT 3

1 : bosons

3/4 : fermions
(12)

4



For one generation of neutrinos, we have gν = 2. For photons, we have

gγ = 2. So, we get

nν
nγ

=
3gνT

3
ν

4gγT 3
γ

=
3

4

T 3
ν

T 3
γ

=
3

4
× 4

11
=

3

11
(13)

b)

We recall that the number density of CMB photons today is

nγ,0 = 410 cm−3 (14)

And the critical density today is

ρc,0 = 1.05× 104 h2eV

cm3
(15)

For non-relativistic massive neutrinos, we have ρν = mνnν . The result in

part a holds for each generation of neutrinos, so we get

Ων,0h
2 =

ρν,0
ρc,0

h2 =
nν,0

∑
imν,i

ρc,0
h2 =

3

11
× 410

1.05× 104eV

∑
i

mν,i ≈
∑

imν,i

94eV
.

(16)

Q4

a)

Recall that the energy density of relativistic particles is

ρ =
π2

30
gT 4

1 : bosons

7/8 : fermions
(17)

So, we get

ρν
ργ

=
7

8
× 3× 2

2

(
Tν
Tγ

)4

=
21

8

(
4

11

)4/3

(18)

b)

Because the masses of neutrinos are small, it is a reasonable assumption that

all neutrinos have the same temperature. The energy density of neutrinos is
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then

ρν(z) =
π2

30
× 2× 7

8
T 4
ν + 2

∫
d3p

(2π)3

√
p2 +m2

2

ep/Tν + 1
+ 2

∫
d3p

(2π)3

√
p2 +m2

3

ep/Tν + 1

=
π2

30
× 2× 7

8
(1 + z)4T 4

ν,0 +
1

π2

∫ ∞
0

p2
√
p2 +m2

2dp

exp
(

p
(1+z)Tν,0

)
+ 1

+

∫ ∞
0

p2
√
p2 +m2

3dp

exp
(

p
(1+z)Tν,0

)
+ 1

 ,

where Tν,0 =
(

4
11

)1/3
Tγ,0. The energy density of photons as a function of

redshift is

ργ(z) =
π2

30
× 2× T 4

γ =
π2

30
× 2(1 + z)4T 4

γ,0 (19)

Recall that Tγ,0 = 2.725K = 2.35× 10−4 eV. So, we have Fig. 3.
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Figure 3: ρν(z)/ργ(z) for a realistic model (blue curve) and an ideal model
(orange curve) as functions of redshift.

Two remarks:

• The curve of massive neutrinos asymptotically approaches the curve

of massless neutrinos at high redshifts. This is expected because the

temperature is high at high redshifts so that particles are relativistic.
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• At low redshifts, the energy density of massive neutrinos is larger than

that of massless neutrinos. This is because the energy density of non-

relativistic particles dilutes slower than relativistic ones.
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