PHYS 480/581
 Cosmology

Homework Assignment 4
Due date: Wednesday November 9 2022, in class

Question 1 (6 points).
Using the expression for the pressure P in terms of the particle distribution function $f(p)$

$$
\begin{equation*}
P=g \int \frac{d^{3} p}{(2 \pi)^{3}} f(p) \frac{p^{2}}{3 E}, \tag{1}
\end{equation*}
$$

to show that, in thermal equilibrium with vanishing chemical potential, we have

$$
\begin{equation*}
\frac{\partial P}{\partial T}=\frac{\rho+P}{T} . \tag{2}
\end{equation*}
$$

To do so, first argue that in thermal equilibrium, the particle distribution function only depends on E / T. Then use the chain rule to relate $\partial f / \partial T$ to $\partial f / \partial p$. Finally, use integration by parts to obtain Eq. (22). You should never have to explicitly write down $f(p)$ in terms of its Bose-Einstein or Fermi-Dirac form.

Question 2 (6 points).
In class, we argued that the neutron freeze-out occurs at a temperature of $T_{f} \simeq 0.8 \mathrm{MeV}$. This temperature can be estimated by comparing the weak interaction rate of the neutrons with the Hubble rate at that epoch. The interaction rate for the key reactions $p+\bar{\nu}_{\mathrm{e}} \leftrightarrow n+e^{+}$and $p+e^{-} \leftrightarrow n+\nu_{\mathrm{e}}$ is given by

$$
\begin{equation*}
\Gamma_{\mathrm{W}}(x)=\left(\frac{255}{\tau_{n}}\right) \frac{12+6 x+x^{2}}{x^{5}} \tag{3}
\end{equation*}
$$

where $\tau_{n}=886.7 \mathrm{sec}$ is the neutron lifetime, and $x=Q / T$, with $Q \equiv m_{n}-m_{p}=1.2933 \mathrm{MeV}$. On the other hand, the Hubble expansion rate can be gotten from the Friedmann equation

$$
\begin{equation*}
H^{2}=\frac{8 \pi G}{3} \rho_{\mathrm{rad}}, \quad \text { with } \quad \rho_{\mathrm{rad}}=\frac{\pi^{2}}{30} g_{*}(T) T^{4} \tag{4}
\end{equation*}
$$

Heuristically, neutron freeze-out will occur when $\Gamma_{\mathrm{W}} \sim H$. A more precise value for T_{f} can be obtained by solving

$$
\begin{equation*}
\Gamma_{\mathrm{W}}\left(T_{f}\right)=\frac{3}{2} H\left(T_{f}\right) . \tag{5}
\end{equation*}
$$

Using the expressions given above, show that $T_{f} \simeq 0.8 \mathrm{MeV}$. Perhaps, the easiest way to do that is to plot both $\Gamma_{\mathrm{W}}(T)$ and $H(T)$ and determine where they intersect. Be mindful of the units to make sure you are comparing the two rates in the same unit system. What value of $g_{*}(T)$ should you use in the above?

Question 3 (6 points).
In class, we mentioned several time that the age of the Universe was about 1 second when neutron froze out at $T_{f}=0.8 \mathrm{MeV}$. Let us derive this result. First, remember that the age of the Universe at scale factor a is given by

$$
\begin{equation*}
t(a)=\int_{0}^{a} \frac{d a^{\prime}}{a^{\prime} H\left(a^{\prime}\right)} \tag{6}
\end{equation*}
$$

The issue is that we don't know H as a function of a at early times, but rather as a function of temperature

$$
\begin{equation*}
H(T)=\sqrt{\frac{8 \pi G}{3} \rho_{\mathrm{rad}}(T)}, \quad \text { with } \quad \rho_{\mathrm{rad}}=\frac{\pi^{2}}{30} g_{*}(T) T^{4} \tag{7}
\end{equation*}
$$

To make matter worse, T does not scale as $1 / a$ when $g_{*}\left(\right.$ or $\left.g_{* S}\right)$ is changing. However, we can derive an approximate expression that is pretty accurate by taking $g_{*}(T)$ to be constant and $T \propto 1 / a$.
(a) Show that if $T \propto 1 / a$, we have

$$
\begin{equation*}
\frac{d T}{T}=-\frac{d a}{a} \tag{8}
\end{equation*}
$$

(b) Using the above and assuming $g_{*}(T)$ to be constant, show that the age of the Universe at temperature T was

$$
\begin{equation*}
\frac{t}{\sec } \simeq \frac{2.42}{\sqrt{g_{*}}}\left(\frac{T}{\mathrm{MeV}}\right)^{-2} \tag{9}
\end{equation*}
$$

(c) Using the appropriate value of g_{*} for $T \sim 1 \mathrm{MeV}$, show that the age of the Universe at $T_{f}=0.8$ MeV was $t \simeq 1.15 \mathrm{sec}$.

Question 4 (3 points).
Use the Saha equation for the free electron fraction X_{e},

$$
\begin{equation*}
\left(\frac{1-X_{e}}{X_{e}^{2}}\right)_{\mathrm{eq}}=\frac{2 \zeta(3)}{\pi^{2}} \eta_{\mathrm{b}}\left(\frac{2 \pi T}{m_{\mathrm{e}}}\right)^{3 / 2} e^{B_{\mathrm{H}} / T}, \tag{10}
\end{equation*}
$$

to show that the temperature of the Universe when 90% of the electrons have combined with protons to form neutral atoms (i.e. $X_{e}=0.1$) is $T_{\text {rec }} \simeq 0.3 \mathrm{eV}$. Why is $T_{\text {rec }} \ll B_{\mathrm{H}}=13.6 \mathrm{eV}$?

