PHYS 480/581 - Solutions of Homework 4

Q1

The Fermi-Dirac/Bose-Einstein distributions for fermions/bosons with zero chemical potential is

$$
\begin{equation*}
f=\frac{1}{e^{E / T} \pm 1} \tag{1}
\end{equation*}
$$

This means that $f(E / T)$ is a function of only E / T. From this fact, we have

$$
\begin{equation*}
\frac{\partial f}{\partial T}=\frac{\partial f}{\partial E} \frac{\partial E}{\partial(E / T)} \frac{\partial(E / T)}{\partial T}=-\frac{E}{T} \frac{\partial f}{\partial E} \tag{2}
\end{equation*}
$$

For the time being, let's just forget about the angular part and the proportional constant. We focus on the integral over p. The pressure is

$$
\begin{align*}
& P \propto \int d p \frac{p^{4}}{3 E} f(p) \tag{3}\\
& \Rightarrow \frac{\partial P}{\partial T} \propto \int_{0}^{\infty} d p \frac{p^{4}}{3 E} \frac{\partial f}{\partial T} \\
&=-\int_{0}^{\infty} d p \frac{p^{4}}{3 T} \frac{\partial f}{\partial E} \\
&=-\int_{m}^{\infty} \frac{E d E}{p} \frac{p^{4}}{3 T} \frac{\partial f}{\partial E} \\
&=-\frac{1}{3 T} \int_{m}^{\infty} d E E\left(E^{2}-m^{2}\right)^{3 / 2} \frac{\partial f}{\partial E} \\
&=\frac{1}{3 T} \int_{m}^{\infty} d E\left[\left(E^{2}-m^{2}\right)^{3 / 2}+3 E^{2}\left(E^{2}-m^{2}\right)^{1 / 2}\right] f \\
&=\frac{1}{3 T} \int_{0}^{\infty} \frac{p d p}{E}\left[\left(E^{2}-m^{2}\right)^{3 / 2}+3 E^{2}\left(E^{2}-m^{2}\right)^{1 / 2}\right] f \\
&=\frac{1}{3 T} \int_{0}^{\infty} d p\left[\frac{p^{4}}{E}+3 E p^{2}\right] f \\
&=\frac{1}{T} \int_{0}^{\infty} p^{2} d p\left[\frac{p^{2}}{3 E}+E\right] f .
\end{align*}
$$

In the above calculations, we used Eq. 2 and this fact: $E=\sqrt{p^{2}+m^{2}} \Rightarrow$ $d E / d p=p / E$; this is used to convert the integral over p to the integral over
E and vice versa. Also note that $f(E \rightarrow \infty)=0$ when doing the integration by parts in the fifth line.

We can now recover the angular part and the proportional constant to get

$$
\begin{equation*}
\frac{\partial P}{\partial T}=\frac{1}{T} \frac{g}{(2 \pi)^{3}} \int d^{3} p\left[\frac{p^{2}}{3 E}+E\right] f=\frac{P+\rho}{T} . \tag{4}
\end{equation*}
$$

Note that $P=\frac{g}{(2 \pi)^{3}} \int d^{3} p \frac{p^{2}}{3 E} f(p)$ and $\rho=\frac{g}{(2 \pi)^{3}} \int d^{3} p E f(p)$.
Q2
All we need to do is converting the units of Hubble rate to second:

$$
\begin{equation*}
H^{2}=\frac{8 \pi G}{3} \rho_{\text {rad }}=\frac{4 \pi^{3} g_{*}(T)}{45} \frac{G}{\hbar^{3} c^{5}}\left(\frac{T}{M e V} 1.6 \times 10^{-13} J\right)^{4}\left(\sec ^{-2}\right) \tag{5}
\end{equation*}
$$

At neutron freeze-out, we shall have $g_{*}=10.75$. The weak decay rate was given as

$$
\begin{equation*}
\Gamma_{W}=\frac{255}{\tau_{n}} \frac{12+6 x+x^{2}}{x^{5}} \tag{6}
\end{equation*}
$$

where the neutron lifetime is $\tau_{n}=886.7 \mathrm{sec}$ and $x=Q / T$ with $Q \equiv m_{n}-$ $m_{p}=1.2933 \mathrm{MeV}$. The two rates Γ_{W} and $3 H / 2$ are plotted in Fig. 1. The two curves intersect at $T_{f} \simeq 0.8 \mathrm{MeV}$, as expected.

Figure 1: Blue line: the weak decay rate Γ_{W}. Orange line: $3 \mathrm{H} / 2$.

Q3

a)

We have

$$
\begin{equation*}
T \propto \frac{1}{a} \Rightarrow \frac{d T}{d a} \propto-\frac{1}{a^{2}} \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d T}{T d a}=-\frac{1}{a} \Rightarrow \frac{d T}{T}=-\frac{d a}{a} \tag{8}
\end{equation*}
$$

b)

Using the result of part (a), we get

$$
\begin{aligned}
t & =\int_{0}^{a} \frac{d a^{\prime}}{a^{\prime} \sqrt{\frac{8 \pi G}{3}} \frac{\pi^{2}}{30} g_{*} T^{4}} \\
& =\sqrt{\frac{45}{4 \pi^{3} G g_{*}}} \int_{0}^{a} \frac{d a^{\prime}}{a^{\prime} T^{2}} \\
& =\sqrt{\frac{45}{4 \pi^{3} G g_{*}}} \int_{T}^{\infty} \frac{d T^{\prime}}{T^{\prime 3}} \\
& =\frac{1}{2} \sqrt{\frac{45}{4 \pi^{3} G g_{*}}} T^{-2} \\
& =\frac{1}{2} \sqrt{\frac{45}{4 \pi^{3} G g_{*}}} \sqrt{\frac{\hbar^{3} c^{5}}{\left(1.6 \times 10^{-13} J\right)^{4}}}\left(\frac{T}{M e V}\right)^{-2} s e c \\
& \simeq \frac{2.42}{\sqrt{g_{*}}}\left(\frac{T}{M e V}\right)^{-2} \sec
\end{aligned}
$$

c)

We mentioned some times ago that $g_{*}(T \sim 1 M e V)=10.75$, so we get

$$
\begin{equation*}
t\left(T_{f} \simeq 0.8 \mathrm{MeV}\right) \simeq \frac{2.42}{\sqrt{10.75}}\left(\frac{0.8 \mathrm{MeV}}{\mathrm{MeV}}\right)^{-2} \sec \simeq 1.15 \mathrm{sec} \tag{9}
\end{equation*}
$$

Q4

One can use the iteration method discussed in class (see Appendix), but here we shall use a plotting method because it's faster. We plot both sides of the Saha equation in Fig. 2. Note that $X_{e}=0.1, \xi(3)=1.202, \eta_{b}=6 \times 10^{-10}$,

Figure 2: Blue line: the left-hand side of Saha equation. Orange line: the right-hand side of Saha equation.
$B_{H}=13.6 \mathrm{eV}$, and $m_{e}=0.511 \times 10^{6} \mathrm{eV}$. The two curves intersect at $T_{\text {rec }} \simeq$ 0.3 eV .

The baryon-to-photon ratio η_{b} is very small, which means that there are many photons for each hydrogen atom. This implies that even if we have $T<$ B_{H}, there is a sufficient number of high-energy photons, corresponding to the high-energy tail of the photon distribution, that can ionize the hydrogen atoms. So, we have to wait until $T_{\text {rec }} \ll B_{H}$ so that the exponential term can kill η_{b}.

Appendix

Here we provide an alternative solution of Q4. The Saha equation is

$$
\begin{equation*}
\left(\frac{1-X_{e}}{X_{e}^{2}}\right)_{e q}=\frac{2 \xi(3)}{\pi^{2}} \eta_{b}\left(\frac{2 \pi T}{m_{e}}\right)^{3 / 2} e^{B_{H} / T} \tag{10}
\end{equation*}
$$

Taking the logarithm of both sides, we get

$$
\begin{equation*}
\ln \left(\frac{1-X_{e}}{X_{e}^{2}}\right)=\ln \left(\frac{2 \xi(3) \eta_{b}}{\pi^{2}}\right)+\frac{3}{2} \ln \left(\frac{2 \pi T}{m_{e}}\right)+\frac{B_{H}}{T} . \tag{11}
\end{equation*}
$$

The first iteration solution is

$$
\begin{equation*}
T_{(1)}=B_{H} / \ln \left(\frac{1-X_{e}}{X_{e}^{2}} \frac{\pi^{2}}{2 \xi(3) \eta_{b}}\right) \simeq 0.5 \mathrm{eV} . \tag{12}
\end{equation*}
$$

Note that $X_{e}=0.1, \xi(3)=1.202, \eta_{b}=6 \times 10^{-10}, B_{H}=13.6 \mathrm{eV}$, and $m_{e}=0.511 \times 10^{6} \mathrm{eV}$. Substituting this back into the logarithm term of Eq. 11, we get the second iteration solution

$$
\begin{equation*}
T_{(2)}=B_{H} / \ln \left(\frac{1-X_{e}}{X_{e}^{2}} \frac{\pi^{2}}{2 \xi(3) \eta_{b}}\left(\frac{m_{e}}{2 \pi T_{(1)}}\right)^{3 / 2}\right) \simeq 0.3 \mathrm{eV} . \tag{13}
\end{equation*}
$$

