
PHYS 480/581 - Solutions of Homework 4

Q1

The Fermi-Dirac/Bose-Einstein distributions for fermions/bosons with zero

chemical potential is

f =
1

eE/T ± 1
. (1)

This means that f(E/T ) is a function of only E/T . From this fact, we have

∂f

∂T
=
∂f

∂E

∂E

∂(E/T )

∂(E/T )

∂T
= −E

T

∂f

∂E
(2)

For the time being, let’s just forget about the angular part and the pro-

portional constant. We focus on the integral over p. The pressure is

P ∝
∫
dp

p4

3E
f(p) (3)

⇒ ∂P

∂T
∝
∫ ∞
0

dp
p4

3E
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= −
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∂f
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=
1

3T

∫ ∞
m

dE
[
(E2 −m2)3/2 + 3E2(E2 −m2)1/2

]
f

=
1

3T

∫ ∞
0

pdp

E

[
(E2 −m2)3/2 + 3E2(E2 −m2)1/2

]
f

=
1

3T

∫ ∞
0

dp

[
p4

E
+ 3Ep2

]
f

=
1

T

∫ ∞
0

p2dp

[
p2

3E
+ E

]
f.

In the above calculations, we used Eq. 2 and this fact: E =
√
p2 +m2 ⇒

dE/dp = p/E; this is used to convert the integral over p to the integral over
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E and vice versa. Also note that f(E →∞) = 0 when doing the integration

by parts in the fifth line.

We can now recover the angular part and the proportional constant to

get
∂P

∂T
=

1

T

g

(2π)3

∫
d3p

[
p2

3E
+ E

]
f =

P + ρ

T
. (4)

Note that P = g
(2π)3

∫
d3p p

2

3E
f(p) and ρ = g

(2π)3

∫
d3pEf(p).

Q2

All we need to do is converting the units of Hubble rate to second:

H2 =
8πG

3
ρrad =

4π3g∗(T )

45

G

~3c5

(
T

MeV
1.6× 10−13J

)4

(sec−2) (5)

At neutron freeze-out, we shall have g∗ = 10.75. The weak decay rate was

given as

ΓW =
255

τn

12 + 6x+ x2

x5
, (6)

where the neutron lifetime is τn = 886.7 sec and x = Q/T with Q ≡ mn −
mp = 1.2933 MeV. The two rates ΓW and 3H/2 are plotted in Fig. 1. The

two curves intersect at Tf ' 0.8 MeV, as expected.
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Figure 1: Blue line: the weak decay rate ΓW . Orange line: 3H/2.
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Q3

a)

We have

T ∝ 1

a
⇒ dT

da
∝ − 1

a2
, (7)

so that
dT

Tda
= −1

a
⇒ dT

T
= −da

a
(8)

b)

Using the result of part (a), we get

t =

∫ a

0

da′

a′
√

8πG
3

π2

30
g∗T 4

=

√
45

4π3Gg∗

∫ a

0

da′

a′T 2

=

√
45

4π3Gg∗

∫ ∞
T

dT ′

T ′3

=
1

2

√
45

4π3Gg∗
T−2

=
1

2

√
45

4π3Gg∗

√
~3c5

(1.6× 10−13J)4

(
T

MeV

)−2
sec

' 2.42
√
g∗

(
T

MeV

)−2
sec

c)

We mentioned some times ago that g∗(T ∼ 1MeV ) = 10.75, so we get

t(Tf ' 0.8 MeV ) ' 2.42√
10.75

(
0.8 MeV

MeV

)−2
sec ' 1.15 sec. (9)

Q4

One can use the iteration method discussed in class (see Appendix), but here

we shall use a plotting method because it’s faster. We plot both sides of the

Saha equation in Fig. 2. Note that Xe = 0.1, ξ(3) = 1.202, ηb = 6 × 10−10,
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Figure 2: Blue line: the left-hand side of Saha equation. Orange line: the
right-hand side of Saha equation.

BH = 13.6 eV, and me = 0.511× 106 eV. The two curves intersect at Trec '
0.3 eV.

The baryon-to-photon ratio ηb is very small, which means that there are

many photons for each hydrogen atom. This implies that even if we have T <

BH , there is a sufficient number of high-energy photons, corresponding to

the high-energy tail of the photon distribution, that can ionize the hydrogen

atoms. So, we have to wait until Trec << BH so that the exponential term

can kill ηb.

Appendix

Here we provide an alternative solution of Q4. The Saha equation is(
1−Xe

X2
e

)
eq

=
2ξ(3)

π2
ηb

(
2πT

me

)3/2

eBH/T . (10)

Taking the logarithm of both sides, we get

ln

(
1−Xe

X2
e

)
= ln

(
2ξ(3)ηb
π2

)
+

3

2
ln

(
2πT

me

)
+
BH

T
. (11)
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The first iteration solution is

T(1) = BH/ ln

(
1−Xe

X2
e

π2

2ξ(3)ηb

)
' 0.5 eV. (12)

Note that Xe = 0.1, ξ(3) = 1.202, ηb = 6 × 10−10, BH = 13.6 eV, and

me = 0.511× 106 eV. Substituting this back into the logarithm term of Eq.

11, we get the second iteration solution

T(2) = BH/ ln

(
1−Xe

X2
e

π2

2ξ(3)ηb

(
me

2πT(1)

)3/2
)
' 0.3 eV. (13)
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