PHYS 480/581 - Solutions of Homework 5

Q1

Using Eq. 7 from the lecture notes of photon decoupling with $X_{e}=1$ (completely ionized), we get the decoupling temperature

$$
\begin{equation*}
T_{d e c} \simeq\left(\frac{\pi^{2}}{2 \xi(3)} \frac{H_{0} \sqrt{\Omega_{m}}}{\eta_{b} \sigma_{T} T_{0}^{3 / 2}}\right)^{2 / 3} \simeq 0.009 \mathrm{eV} \tag{1}
\end{equation*}
$$

We used the numerical values given in the question and the known fact that $T_{0}=2.35 \times 10^{-4} \mathrm{eV}$. The corresponding redshift is

$$
\begin{equation*}
z_{d e c}=\frac{T_{d e c}}{T_{0}}-1 \simeq 37.3 \tag{2}
\end{equation*}
$$

Thus, without recombination, photons would decouple much later than the normal case.

Q2

a)

We knew that the total number of relativistic degrees of freedom of the Standard Model is $g_{*}=106.75$. At GUT scale, all particles are relativistic. So, we get

$$
\begin{equation*}
H_{I}=\sqrt{\frac{\pi^{2}}{90 M_{p}^{2}} g_{*}\left(T_{G U T}\right) T_{G U T}^{4}} \simeq 1.4 \times 10^{12} G e V \tag{3}
\end{equation*}
$$

where $M_{P} \simeq 2.4 \times 10^{18} \mathrm{GeV}$ is the reduced Planck mass, $T_{G U T} \simeq 10^{15} \mathrm{GeV}$.
Now we do a unit conversion

$$
\begin{equation*}
H_{I}^{-1}=\frac{\hbar c}{1.4 \times 10^{12} \mathrm{GeV}} \simeq 1.4 \times 10^{-28} \mathrm{~m} \tag{4}
\end{equation*}
$$

where $\hbar \simeq 6.58 \times 10^{-25} \mathrm{Gev} . \mathrm{s}$ and $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
b)

Due to the scaling law $T \propto 1 / a$, we have

$$
\begin{equation*}
T_{\text {end }}=T_{0} \frac{a_{0}}{a_{\text {end }}} \Rightarrow \frac{a_{0}}{a_{\text {end }}}=\frac{T_{\text {end }}}{T_{0}}=\frac{10^{24} \mathrm{eV}}{2.348 \times 10^{-4} \mathrm{eV}} \simeq 4 \times 10^{27} \tag{5}
\end{equation*}
$$

The subscripts "end" indicate the moment of the end of inflation. $T_{\text {end }} \simeq$ $T_{G U T} \simeq 10^{15} \mathrm{GeV}=10^{24} \mathrm{eV}$.
c)

At the end of inflation, we have

$$
\begin{equation*}
H_{e n d}^{-1}=e^{N} H_{I}^{-1} \tag{6}
\end{equation*}
$$

But we also have

$$
\begin{equation*}
\frac{3.1 H_{0}^{-1}}{H_{e n d}^{-1}}=\frac{a_{0}}{a_{e n d}} . \tag{7}
\end{equation*}
$$

A way to think about this is that: physical distance $=$ comoving distance \times scale factor, but the comoving distance is fixed so it does not appear in our ratio. From these two equations, we get

$$
\begin{equation*}
N=\ln \left(\frac{a_{\text {end }}}{a_{0}} \frac{3 \cdot 1 H_{0}^{-1}}{H_{I}^{-1}}\right) \simeq 62 . \tag{8}
\end{equation*}
$$

We of course used the result of part (b) and the given values of H_{0} and H_{I}.
d)

For the flatness problem, we just do exactly the same thing we did in part (c) except that now we have a bound

$$
\begin{equation*}
N>\ln \left(\frac{a_{\text {end }}}{a_{0}} \frac{10^{3} H_{0}^{-1}}{H_{I}^{-1}}\right) \simeq 68 . \tag{9}
\end{equation*}
$$

So, we see that the flatness problem asks for a stronger condition than the horizon problem.

Q3
Assuming uniform distribution of dark matter halo, the distance d from the galactic center to the nearest black hole would be inferred from

$$
\begin{gather*}
10^{-10} M_{\odot} \simeq \frac{10^{12} M_{\odot}}{\frac{4}{3} \pi R^{3}} \frac{4}{3} \pi d^{3} \tag{10}\\
\Rightarrow d \simeq\left[10^{-22}(200 \mathrm{kpc})^{3}\right]^{1 / 3} \approx 9.28 \times 10^{-6} \mathrm{kpc} \tag{11}
\end{gather*}
$$

From Google, the diameter of the Solar System is around $2.92 \times 10^{-7} \mathrm{kpc}$. Thus, we see that the distance from the galactic center to the nearest black hole is roughly ten times the size of the Solar System.

