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Consider the Poincaré half-plane, which has for metric
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ds® = (dx2 + dy2) ,
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with y > 0, and where a is a constant.

(a). Compute the length of a  =constant line segment between the coordinates y; and ya,

with y2 > y;. Could an observer reach y = 0 by traveling a finite distance.

(b). Show that the geodesics in this space are either semi-circles with centers located on the

r—axis or x =constant lines.

(c). Is this space curved? Is this a maximally symmetric space?.

We are given that
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We list all non-zero derivatives of metric tensor
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Let’s compute Christoffel symbols first
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setting @ = = one has
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the only non-zero terms are py =y, v=zxorpy=2x, v=y
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likewise, setting a = y we have
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Loy = igyy (Ougvy + Ov gy — Oygpuv)

the only non-zero terms are py =z, v=zand p=y, v =1y
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Geodesic equation is given by
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Caveat! Since we are not in Minkowski space, thus we don’t have such relation dr = —ds?,
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thus instead using proper time dr as variable for geodesic equation, it would be more appro-

priate to use ds as variable. Hence
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let’s focus on eq (1), one may realize that integral factor is y~2, thus eq (1) read
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(a). Now if C' = 0, we get x =constant, in this case geodesic is simplify vertical line, thus
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i.e., the length of z =constant line segment between y; and ys is given by alog %, notice that
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observer would never reach y = 0 by traveling finite distance. O

(b). We have shown in part (a) that if C = 0 geodesics is just vertical lines, next assume

C # 0, then consider following equations

use the fact that —
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%d—i, we may solve % from equation (3) and (4),
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integrate on both sides yields
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as one may realize, this is semi-circles with centers located on the x—axis, as we see in following

picture.

O



Figure 1:

(c). Let’s consider Riemann tensor,
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notice that R*,, , = —-R" . and RY = —RY .. i« fully covariant form, non-zero compo-
nents are
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Rzya:y = Rywyz =7 & Rzyyw = Ryzzy =
Y Y
Ricci tensor is given by
RHV = Rauav
all that survives are two components
Rzz - Ryy = 7y72a

Geodesic in Poincaré Half-plane.

notice that the only non-zero term would be axyxy (or yzyz),



finally Ricci scalar

2

R=g"R,, = —=

The space has negative curvature, hence it is a hyperbolic like space. Finally, Maximally

symmetric space is a space that is both homogeneous and isotropic, such space has largest

N(N +1)
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manifold, further the following conditions would hold for such space

number of Killing vector fields given by , where N = dim M is dimension of our

Ricci scalar R is a constant.
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Ricci tensor is proportional to the metric tensor, R, = G-

. - R
Riemann curvature tensor is given by Ragu, = m (Gap9sy — Jav9su) -

It is easy to see that Poincaré half-plane is maximally symmetric space. O



