ST: General Relativity Extra Problem 8

Leon (Lihang) Liu

March. 2024

Q1. Consider the Poincaré half-plane, which has for metric

$$
d s^{2}=\frac{a^{2}}{y^{2}}\left(d x^{2}+d y^{2}\right),
$$

with $y>0$, and where a is a constant.
(a). Compute the length of a $x=$ constant line segment between the coordinates y_{1} and y_{2}, with $y_{2}>y_{1}$. Could an observer reach $y=0$ by traveling a finite distance.
(b). Show that the geodesics in this space are either semi-circles with centers located on the x-axis or $x=$ constant lines.
(c). Is this space curved? Is this a maximally symmetric space?.

Sol.
We are given that

$$
g_{\mu \nu}=\left(\begin{array}{cc}
\frac{a^{2}}{y^{2}} & \\
& \frac{a^{2}}{y^{2}}
\end{array}\right) \quad \& \quad g^{\mu \nu}=\left(\begin{array}{ll}
\frac{y^{2}}{a^{2}} & \\
& \frac{y^{2}}{a^{2}}
\end{array}\right)
$$

We list all non-zero derivatives of metric tensor

$$
\partial_{y} g_{x x}=-\frac{2 a^{2}}{y^{3}}, \quad \partial_{y} g_{y y}=-\frac{2 a^{2}}{y^{3}}
$$

Let's compute Christoffel symbols first

$$
\Gamma_{\mu \nu}^{\alpha}=\frac{1}{2} g^{\alpha \beta}\left(\partial_{\mu} g_{\nu \beta}+\partial_{\nu} g_{\beta \mu}-\partial_{\beta} g_{\mu \nu}\right)
$$

setting $\alpha=x$ one has

$$
\Gamma_{\mu \nu}^{x}=\frac{1}{2} g^{x x}\left(\partial_{\mu} g_{\nu x}+\partial_{\nu} g_{x \mu}-\partial_{x} g_{\mu \nu}\right)
$$

the only non-zero terms are $\mu=y, \nu=x$ or $\mu=x, \nu=y$

$$
\Gamma_{x y}^{x}=\Gamma_{y x}^{x}=\frac{1}{2} g^{x x}\left(\partial_{y} g_{x x}\right)=-\frac{1}{y}
$$

likewise, setting $\alpha=y$ we have

$$
\Gamma_{\mu \nu}^{y}=\frac{1}{2} g^{y y}\left(\partial_{\mu} g_{\nu y}+\partial_{\nu} g_{y \mu}-\partial_{y} g_{\mu \nu}\right)
$$

the only non-zero terms are $\mu=x, \nu=x$ and $\mu=y, \nu=y$

$$
\Gamma_{x x}^{y}=\frac{1}{2} g^{y y}\left(-\partial_{y} g_{x x}\right)=\frac{1}{y} \quad \& \quad \Gamma_{y y}^{y}=\frac{1}{2} g^{y y}\left(\partial_{y} g_{y y}\right)=-\frac{1}{y}
$$

Geodesic equation is given by

$$
\frac{d^{2} x^{\mu}}{d s^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d s} \frac{d x^{\beta}}{d s}=0
$$

Caveat! Since we are not in Minkowski space, thus we don't have such relation $d \tau=-d s^{2}$, thus instead using proper time $d \tau$ as variable for geodesic equation, it would be more appropriate to use $d s$ as variable. Hence

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d s^{2}}-\frac{2}{y} \frac{d x}{d s} \frac{d y}{d s}=0 \tag{1}\\
\frac{d^{2} y}{d s^{2}}+\frac{1}{y}\left(\left(\frac{d x}{d s}\right)^{2}-\left(\frac{d y}{d s}\right)^{2}\right)=0
\end{array}\right.
$$

let's focus on eq (1), one may realize that integral factor is y^{-2}, thus eq (1) read

$$
\frac{d}{d s}\left(\frac{d x}{d s} y^{-2}\right)=0 \Longrightarrow \frac{d x}{d s}=C y^{2}, C \in \mathbb{R}
$$

(a). Now if $C=0$, we get $x=$ constant, in this case geodesic is simplify vertical line, thus

$$
\ell=\int_{y_{1}}^{y_{2}} \sqrt{d s^{2}}=\int_{y_{1}}^{y_{2}} \frac{a}{y} \sqrt{\left(\frac{d x}{d s} \frac{d s}{d y}\right)^{2}+1} d y=a \int_{y_{1}}^{y_{2}} \frac{d y}{y}=a \log \frac{y_{2}}{y_{1}}
$$

i.e., the length of $x=$ constant line segment between y_{1} and y_{2} is given by $a \log \frac{y_{2}}{y_{1}}$, notice that observer would never reach $y=0$ by traveling finite distance.
(b). We have shown in part (a) that if $C=0$ geodesics is just vertical lines, next assume $C \neq 0$, then consider following equations

$$
\left\{\begin{array}{l}
\frac{d x}{d s}=C y^{2} \tag{3}\\
\frac{a^{2}}{y^{2}}\left(\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}\right)=1
\end{array}\right.
$$

use the fact that $\frac{d y}{d s}=\frac{d y}{d x} \frac{d x}{d s}$, we may solve $\frac{d y}{d x}$ from equation (3) and (4),

$$
\begin{gathered}
\frac{d y}{d x}=\sqrt{\frac{y^{2}-a^{2} C^{2} y^{4}}{a^{2} C^{2} y^{4}}}=\sqrt{\frac{1-a^{2} C^{2} y^{2}}{a^{2} C^{2} y^{2}}} \\
\frac{a C y d y}{\sqrt{1-a^{2} C^{2} y^{2}}}=d x
\end{gathered}
$$

integrate on both sides yields

$$
\begin{gathered}
-\frac{\sqrt{1-a^{2} C^{2} y^{2}}}{a C}+a=x, \quad a \in \mathbb{R} \\
\frac{1}{a^{2} C^{2}}\left(1-a^{2} C^{2} y^{2}\right)=(x-a)^{2} \\
(x-a)^{2}+y^{2}=\frac{1}{a^{2} C^{2}}, \quad a, C \in \mathbb{R} \backslash\{0\}
\end{gathered}
$$

as one may realize, this is semi-circles with centers located on the x-axis, as we see in following picture.

Figure 1: Geodesic in Poincaré Half-plane.
(c). Let's consider Riemann tensor, notice that the only non-zero term would be $x y x y$ (or $y x y x$),

$$
R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\beta \nu}^{\alpha}-\partial_{\nu} \Gamma_{\beta \mu}^{\alpha}+\Gamma_{\mu \zeta}^{\alpha} \Gamma_{\beta \nu}^{\zeta}-\Gamma_{\nu \zeta}^{\alpha} \Gamma_{\beta \mu}^{\zeta}
$$

thus

$$
\begin{aligned}
R_{y x y}^{x} & =\partial_{x} \Gamma_{y y}^{x}-\partial_{y} \Gamma_{y x}^{x}+\Gamma_{x \zeta}^{x} \Gamma_{y y}^{\zeta}-\Gamma_{y \zeta}^{x} \Gamma_{y x}^{\zeta} \\
& =-\partial_{y} \Gamma_{y x}^{x}+\Gamma_{x y}^{x} \Gamma_{y y}^{y}-\Gamma_{y x}^{x} \Gamma_{y x}^{x} \\
& =-\frac{1}{y^{2}}+\frac{1}{y^{2}}-\frac{1}{y^{2}} \\
& =-\frac{1}{y^{2}} \\
R_{x y x}^{y} & =g^{y y} g_{x x} R_{y x y}^{x} \\
& =-\frac{1}{y^{2}}
\end{aligned}
$$

notice that $R^{x}{ }_{y y x}=-R^{x}{ }_{y x y}$ and $R^{y}{ }_{x x y}=-R^{y}{ }_{x y x}$, in fully covariant form, non-zero components are

$$
R_{x y x y}=R_{y x y x}=-\frac{a^{2}}{y^{4}} \quad \& \quad R_{x y y x}=R_{y x x y}=\frac{a^{2}}{y^{4}}
$$

Ricci tensor is given by

$$
R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha}
$$

all that survives are two components

$$
R_{x x}=R_{y y}=-\frac{1}{y^{2}}
$$

finally Ricci scalar

$$
R=g^{\mu \nu} R_{\mu \nu}=-\frac{2}{a^{2}}
$$

The space has negative curvature, hence it is a hyperbolic like space. Finally, Maximally symmetric space is a space that is both homogeneous and isotropic, such space has largest number of Killing vector fields given by $\frac{N(N+1)}{2}$, where $N=\operatorname{dim} M$ is dimension of our manifold, further the following conditions would hold for such space

Ricci scalar R is a constant.

Ricci tensor is proportional to the metric tensor, $R_{\mu \nu}=\frac{R}{N} g_{\mu \nu}$.
Riemann curvature tensor is given by $R_{\alpha \beta \mu \nu}=\frac{R}{N(N-1)}\left(g_{\alpha \mu} g_{\beta \nu}-g_{\alpha \nu} g_{\beta \mu}\right)$.

It is easy to see that Poincaré half-plane is maximally symmetric space.

