PHYS 480/581 General Relativity

Extra Problems \#1

Question 1.

Use the Equivalence Principle to compute the deflection angle δ that a light ray from a distant star experiences as it passes near the Sun. Assume that the light ray barely graze the surface of the Sun. This can be done by calculating the net y-direction velocity component v_{y} acquired by the light ray as it passes close to the Sun, assuming that its total speed remains c (the speed of light). The deflection angle is then $\sin \delta=v_{y} / c$. Show that $\delta \simeq 0.87 \mathrm{arcsec}$. You may use the fact that $G M_{\odot} / c^{2}=1477.1 \mathrm{~m}$ and that $R_{\odot} \simeq 7 \times 10^{5} \mathrm{~km}$. This answer is actually off by a factor of 2 compared to the correct result obtained using the machinery of GR. Which aspect of the equivalence principle is not respected in the above calculation?

Figure 1: Deflection experienced by a light ray as it passes near the Sun.

