PHYS 480/581 General Relativity

Extra Problems \#10

Question 1.

Let's take a very long thin solid rod of mass density λ (per unit length) extending along the z-axis (we can neglect the pressure of the rod). The rod is moving in the z direction with a small coordinate speed $V \ll 1$, making it essentially a static source. Using the non-relativistic and weak-field limit (i.e. $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$ with $\left|h_{\mu \nu}\right| \ll 1$) of the geodesic equation

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}} \approx \frac{1}{2} \delta^{i l} \partial_{l} h_{t t}+\delta^{i l}\left(\partial_{l} h_{t j}-\partial_{j} h_{l t}\right) v^{j}, \tag{1}
\end{equation*}
$$

compute the equation of motion for a non-relativistic particle propagating near this rod. In the weak, static limit, the Einstein equation admits the solution

$$
\begin{equation*}
h_{\beta \nu}(\vec{r})=2 \int d^{3} r_{\mathrm{s}} \frac{G\left(2 T_{\beta \nu}-\eta_{\beta \nu} T\right)}{\left|\vec{r}-\vec{r}_{\mathrm{s}}\right|}, \tag{2}
\end{equation*}
$$

where the integral runs over where the stress-energy tensor has support (i.e. where the matter/energy is). Assume that the stress-energy tensor admits a perfect fluid form.

Question 2.

Show that $h_{\mu \nu}=A_{\mu \nu} \cos (\omega t-\vec{k} \cdot \vec{r})$ is a solution to the weak-field Einstein equation in vacuum $\square^{2} h_{\mu \nu}=0$. Here, $A_{\mu \nu}$ is a constant matrix. How is ω related to k ? What constraints does the requirement that $H_{\nu}=0$ put on the matrix $A_{\mu \nu}$?

