PHYS 480/581
 General Relativity

Extra Problems \#12

Question 1.

Imagine that in a certain region of spacetime, we have $H_{\mu \nu}=0$ except for $H_{x x}=-H_{y y}=$ $A \cos (\omega t-\omega z)$, where ω is a constant. This represents a plane wave whose crests move in the $+z$ direction at the speed of light.
(a) Show that this wave obeys the Lorenz gauge condition.

$$
\begin{equation*}
\partial_{\mu} H^{\mu \nu}=0 . \tag{1}
\end{equation*}
$$

(b) Show that this wave is a solution to the weak-field Einstein equation in vacuum,

$$
\begin{equation*}
\square^{2} H^{\mu \nu}=0 \tag{2}
\end{equation*}
$$

(c) Determine the metric for the spacetime through which this gravitational wave moves.
(d) What condition must be satisfied at all points if we are to satisfy the weak-field condition $\left|h_{\mu \nu}\right| \ll 1$.

