Solutions extra problems 12
a) Show: $\partial_{\mu} H^{\mu}=0$!

$$
\begin{array}{ll}
\partial_{t} H^{t t}=\partial_{t} 0=0 & \partial_{y} H^{y y}=\partial_{y} A \cos (\omega t-\omega z)=0 \\
\partial_{x} H^{* x}=\partial_{x} A \cos (\omega t-\omega z)=0 & \partial_{z} H^{z z}=\partial_{z} 0=0 \\
\Rightarrow \partial_{\mu} H^{\mu \nu}=0! &
\end{array}
$$

b) show: $\partial_{\alpha} \partial^{\alpha} H^{\mu \nu}=0$
ob for $\mu=t_{;} \nu=t$ and $\mu=z \nu=z \quad \partial_{\alpha}^{\alpha} \partial_{\alpha} H^{\mu \nu}=0$ as $H^{t \epsilon}=H^{z z}=0$

$$
\begin{aligned}
\mu=x \nu=x: \quad\left(\eta^{\alpha \beta}+h^{\alpha \beta}\right) \partial_{\alpha} \partial_{\beta} H^{\alpha x} & \simeq \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} H^{\times x} \quad \text { for } 1 \text {. order } \\
& =\eta^{t t} \partial_{t} \partial_{t} H^{\alpha x}+\eta^{z z} \partial_{z} \partial_{z} H^{\alpha^{*}} \\
& =-1 \partial_{t}^{2} A \cos \left(\omega t-\omega_{z}\right)+1 \partial_{z}^{2} A \cos \left(\omega t-\omega_{z}\right) \\
& =-A\left[-\cos \left(\omega t-\omega_{z}\right)\right] \omega^{2}+A\left[-\cos \left(\omega t-\omega_{z}\right)\right] \omega^{2} \\
& =0
\end{aligned}
$$

same goes for $\mu=y ; \nu=y \Rightarrow \square^{2} H^{\mu \nu}=0!$
c) calculate the metric!

$$
\begin{aligned}
& g_{\mu}=\eta_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu}=H_{\mu \nu}+\frac{1}{2} \eta^{\mu \nu} H \\
& H=\eta^{\alpha \beta} H_{\alpha, \beta}=\eta^{\omega \omega} H_{\alpha x}+\eta^{\mu} H_{\mu \nu}=1 \cdot A \cos \left(\omega t-\omega_{z}\right)+1 \cdot[-A \cos (\omega t-\omega z)]=0 \\
& \Rightarrow g_{\mu \nu}=\eta_{\mu}+H_{\mu} \Rightarrow d_{s}^{2}=-d t^{2}+\left[1+A \cos \left(\omega t-\omega_{z}\right)\right] d x^{2}+[1-A \cos (\omega t-\omega z)] d y^{2}+d z^{2}
\end{aligned}
$$

d) condition for $\left|h_{\mu}\right| \ll 1$
as $\cos \left(\omega t-\omega_{z}\right)=1$ eventually we can only can choose A freely

$$
\Rightarrow \text { for }\left|h_{\mu}\right| \ll 1 ;|A| \ll 1
$$

