PHYS 480/581
 General Relativity

Extra Problems \#13

Question 1.

Consider the following gravitational wave

$$
h_{\mu \nu}^{\mathrm{TT}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{1}\\
0 & A \cos \left(k_{\alpha} x^{\alpha}\right) & A \sin \left(k_{\alpha} x^{\alpha}\right) & 0 \\
0 & A \sin \left(k_{\alpha} x^{\alpha}\right) & -A \cos \left(k_{\alpha} x^{\alpha}\right) & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

where $k_{\alpha}=(-\omega, 0,0, \omega)$ and A is a small number.
(a) What kind of polarization structure does this gravitational wave have? What would be the electromagnetic equivalent?
(b) Argue that such a wave perturbs a ring of particles in the $x y$ plane in such a way that their shape becomes an ellipse that rotates in that plane. [You may find the following trig identity useful: $\cos A \cos B+\sin A \sin B=\cos (A-B)$.
(c) What is the rotation rate of the ellipse in terms of ω ? Does it rotate clockwise or counterclockwise?

