Coffee Hour 13

Max Schmidt

29 April 2024

1 PROBLEM

1.1 Question:

What kind of polarization structure does this gravitational wave have? What would be the electromagnetic equivalent?

1.2 Answer:

This would be a circular wave. Its electromagnetic equivalent would be a circular polarized electromagnetic wave.

2 PROBLEM

2.1 Question:

Argue that such a wave perturbs a ring of particles in the xy-plane in such a way that their shape becomes an ellipse that rotates in that plane. You may find the following trig identity useful:

$$
\begin{equation*}
\cos A \cos B+\sin A \sin B=\cos (A B) \tag{1}
\end{equation*}
$$

2.2 Answer:

$$
\begin{align*}
& \Delta s^{2}=\left(\eta_{\mu \nu}+h_{\mu \nu}^{T T}\right) \Delta x^{\mu} \Delta x^{\nu} \\
& =-\Delta t^{2}+\Delta x^{2}+\left(1+A \cos \left(k_{\alpha} x^{\alpha}\right)\right) \Delta x^{2} \\
& \left.\quad+\left(1-A \cos \left(k_{\alpha} x^{\alpha}\right)\right) \Delta y^{2}+2 A \sin \left(k_{\alpha} x^{\alpha}\right)\right) \Delta x \Delta y \tag{2}
\end{align*}
$$

With $\Delta t^{2}=\Delta z^{2}=0$ and by switching to zylindrical coordinates, we obtain

$$
\begin{align*}
\Delta s^{2}=\left(1+A \cos \left(k_{\alpha} x^{\alpha}\right)\right) R^{2} \cos ^{2} \theta & +\left(1-A \cos \left(k_{\alpha} x^{\alpha}\right)\right) R^{2} \sin ^{2} \theta \\
& +2 A \sin \left(k_{\alpha} x^{\alpha}\right) R^{2} \sin \theta \cos \theta \tag{3}
\end{align*}
$$

Furthermore, by employing the identities
$\sin ^{2} A+\cos ^{2} A=1$
$\cos ^{2} A-\sin ^{2} A=\cos (2 A)$
$\sin A \cos A=\frac{\sin (2 A)}{2}$
we end up with

$$
\begin{equation*}
\Delta s^{2}=R^{2}\left[1+A \cos \left(k_{\alpha} x^{\alpha}\right) \cos (2 \theta)+A \sin \left(k_{\alpha} x^{\alpha}\right) \sin (2 \theta)\right] \tag{7}
\end{equation*}
$$

This now we can bring with Eq. 1 into its final form.

$$
\begin{align*}
\boldsymbol{\Delta} \boldsymbol{s}^{\mathbf{2}}=R^{2}\left[1+A\left(\cos \left(k_{\alpha} x^{\alpha}-2 \theta\right)\right]\right. & = \\
& \boldsymbol{R}^{2}[\mathbf{1}+\boldsymbol{A}(\boldsymbol{\operatorname { c o s }}(\omega \boldsymbol{t}-\mathbf{2} \boldsymbol{\theta})] \tag{8}
\end{align*}
$$

This equation now describes a ring that is perturbed in the xy-plane such that its shape becomes an ellipse that rotates within this plane.

3 PROBLEM

3.1 Question:

What is the rotation rate of the ellipse in terms of ω ? Does it rotate clockwise or counter- clockwise?

3.2 Answer:

From Eq. 8 we can see:
$\theta=\frac{\omega t}{2} \Longleftrightarrow t=\frac{2 t}{\omega}$
Also from Eq. 8 we can obtain that it rotates counterclockwise.

