PHYS 480/581 General Relativity

Extra Problems \#2

Question 1.

Imagine that space (not spacetime) is actually a three-torus with size L. By this we mean that there is a coordinate system (t, x, y, z) such that every point with coordinates (t, x, y, z) is identified with every point with coordinates $(t, x+L, y, z),(t, x, y+L, z)$, and $(t, x, y, z+L)$. Note that the time coordinates is the same.

Now consider two observers; observer A is at rest with respect to this coordinate system, while observer B moves in the x-direction with constant velocity $v . A$ and B begin at the same event, and while A remains still, B moves around the universe and comes back to intersect the worldline of A without ever having to accelerate (since the universe is periodic).
What are the relative proper times experienced in this interval by A and B ? Is this consistent with your understanding of Lorentz invariance?

Question 2.

Three events A, B, and C, are seen by observer \mathcal{O} to occur in the order $A B C$. Another observer, $\overline{\mathcal{O}}$, sees the events to occur in the order $C B A$. Is it possible that a third observer sees the events in the order $A C B$?

