General Relativity Extra Problems 3

Question 1.

Part a)
On question 3 of homework 2 we showed that:

$$
\begin{equation*}
\eta_{\sigma \nu}=\Lambda^{\mu}{ }_{\sigma} \eta_{\mu \beta} \Lambda^{\beta}{ }_{\nu} . \tag{1}
\end{equation*}
$$

As $\delta^{\alpha}{ }_{\sigma} \eta_{\alpha \nu}=\eta_{\sigma \nu}$, we can add a Kronecker delta to the left hand side of Eq. 1 and obtain:

$$
\begin{equation*}
\delta_{\sigma}^{\alpha} \eta_{\alpha \nu}=\Lambda_{\sigma}^{\mu} \eta_{\mu \beta} \Lambda_{\nu}^{\beta} . \tag{2}
\end{equation*}
$$

Using the fact that:

$$
\delta^{\alpha}{ }_{\sigma}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\mu} \Lambda_{\sigma}^{\mu},
$$

Eq. 2 becomes:

$$
\begin{equation*}
\left(\Lambda^{-1}\right)^{\alpha}{ }_{\mu} \Lambda^{\mu}{ }_{\sigma} \eta_{\alpha \nu}=\Lambda^{\mu}{ }_{\sigma} \eta_{\mu \beta} \Lambda^{\beta}{ }_{\nu} \tag{3}
\end{equation*}
$$

Now all that remains is to divide both sides of Eq. 3 by $\Lambda^{\mu}{ }_{\sigma}$ to obtain our result:

$$
\begin{equation*}
\left(\Lambda^{-1}\right)^{\alpha}{ }_{\mu} \eta_{\alpha \nu}=\eta_{\mu \beta} \Lambda^{\beta}{ }_{\nu} . \tag{4}
\end{equation*}
$$

Part b)

Remembering that:

$$
\delta^{\mu}{ }_{\nu} \equiv \begin{cases}1 & \mu=\nu \\ 0 & \mu \neq \nu\end{cases}
$$

we can show:

$$
\begin{aligned}
\delta^{\mu} & =\delta^{0}{ }_{0}+\delta^{1}{ }_{1}+\delta^{2}{ }_{2}+\delta^{3}{ }_{3} \\
& =1+1+1+1 \\
& =4 .
\end{aligned}
$$

Question 2.

Part a)
We want to show that $\eta_{\mu \nu} F^{\mu \nu}=-\eta_{\mu \nu} F^{\mu \nu}$ and therefore $\eta_{\mu \nu} F^{\mu \nu}=0$. Because $F^{\mu \nu}$ is antisymmetric $\left(F^{\mu \nu}=-F^{\nu \mu}\right)$, we can write that:

$$
\begin{equation*}
\eta_{\mu \nu} F^{\mu \nu}=-\eta_{\mu \nu} F^{\nu \mu} . \tag{5}
\end{equation*}
$$

Similarly, $\eta_{\mu \nu}$ is symmetric $\left(\eta_{\mu \nu}=\eta_{\nu \mu}\right)$ and so:

$$
\begin{align*}
\eta_{\mu \nu} F^{\mu \nu} & =-\eta_{\mu \nu} F^{\nu \mu} \\
& =-\eta_{\nu \mu} F^{\nu \mu} \tag{6}
\end{align*}
$$

Finally, as ν and μ are bound/dummy indices in this equation, we can flip their order without consequence (work this out if you don't believe it). This gives us:

$$
\begin{equation*}
\eta_{\mu \nu} F^{\mu \nu}=-\eta_{\mu \nu} F^{\mu \nu} \tag{7}
\end{equation*}
$$

which is only possible if $\eta_{\mu \nu} F^{\mu \nu}=0$.
Part b)
If we make the substitution $p^{\mu} p_{\mu}=\eta_{\mu \nu} p^{\nu} p^{\mu}$ our derivative becomes:

$$
\frac{d}{d \tau}\left(p^{\mu} p_{\mu}\right)=\underset{1}{d \tau}\left(\eta_{\mu \nu} p^{\nu} p^{\mu}\right)
$$

$\eta_{\mu \nu}$ has no τ dependence, and so applying the product rule yields:

$$
\begin{aligned}
\frac{d}{d \tau}\left(\eta_{\mu \nu} p^{\nu} p^{\mu}\right) & =\eta_{\mu \nu}\left(\frac{d p^{\nu}}{d \tau} p^{\mu}+p^{\nu} \frac{d p^{\mu}}{d \tau}\right) \\
& =\eta_{\mu \nu}\left(q F^{\nu \sigma} \eta_{\sigma \alpha} u^{\alpha} p^{\mu}+p^{\nu} q F^{\mu \sigma} \eta_{\sigma \alpha} u^{\alpha}\right)
\end{aligned}
$$

Now we take advantage of the fact that $p^{\mu}=m u^{\mu}$ before rearranging our terms:

$$
\begin{aligned}
\frac{d}{d \tau}\left(\eta_{\mu \nu} p^{\nu} p^{\mu}\right) & =\eta_{\mu \nu}\left(q F^{\nu \sigma} \eta_{\sigma \alpha} u^{\alpha} m u^{\mu}+m u^{\nu} q F^{\mu \sigma} \eta_{\sigma \alpha} u^{\alpha}\right) \\
& =m q\left(F^{\nu \sigma} \eta_{\sigma \alpha} \eta_{\mu \nu} u^{\alpha} u^{\mu}+F^{\mu \sigma} \eta_{\sigma \alpha} \eta_{\mu \nu} u^{\nu} u^{\alpha}\right) \\
& =m q\left(F^{\nu \sigma} u_{\sigma} u_{\nu}+F^{\mu \sigma} u_{\mu} u_{\sigma}\right) \\
& =m q\left(F^{\rho \sigma} u_{\rho} u_{\sigma}+F^{\rho \sigma} u_{\rho} u_{\sigma}\right) .
\end{aligned}
$$

Now just as in part a) we use the facts that $F^{\rho \sigma}=-F^{\sigma \rho}$ and $F^{\rho \sigma} u_{\rho} u_{\sigma}=F^{\sigma \rho} u_{\sigma} u_{\rho}$ to write:

$$
\begin{aligned}
\frac{d}{d \tau}\left(\eta_{\mu \nu} p^{\nu} p^{\mu}\right) & =m q\left(F^{\rho \sigma} u_{\rho} u_{\sigma}-F^{\sigma \rho} u_{\sigma} u_{\rho}\right) \\
& =m q\left(F^{\rho \sigma} u_{\rho} u_{\sigma}-F^{\rho \sigma} u_{\rho} u_{\sigma}\right) . \\
& =0
\end{aligned}
$$

