Evan David PHYS 581 February 5, 2024

General Relativity Extra Problems 3

Question 1.

Part a)

On question 3 of homework 2 we showed that:

(2)

As
$$\delta^{\alpha}{}_{\sigma}\eta_{\alpha\nu} = \eta_{\sigma\nu}$$
, we can add a Kronecker delta to the left hand side of Eq. 1 and obtain:

$$\delta^{\alpha}{}_{\sigma}\eta_{\alpha\nu} = \Lambda^{\mu}{}_{\sigma}\eta_{\mu\beta}\Lambda^{\beta}{}_{\nu}.$$

Using the fact that:

$$\delta^{\alpha}{}_{\sigma} = (\Lambda^{-1})^{\alpha}{}_{\mu}\Lambda^{\mu}{}_{\sigma}$$

 $\eta_{\sigma\nu} = \Lambda^{\mu}{}_{\sigma}\eta_{\mu\beta}\Lambda^{\beta}{}_{\nu}.$

Eq. 2 becomes:

(3)
$$(\Lambda^{-1})^{\alpha}{}_{\mu}\Lambda^{\mu}{}_{\sigma}\eta_{\alpha\nu} = \Lambda^{\mu}{}_{\sigma}\eta_{\mu\beta}\Lambda^{\beta}{}_{\nu}.$$

Now all that remains is to divide both sides of Eq. 3 by $\Lambda^{\mu}{}_{\sigma}$ to obtain our result:

(4)
$$(\Lambda^{-1})^{\alpha}{}_{\mu}\eta_{\alpha\nu} = \eta_{\mu\beta}\Lambda^{\beta}{}_{\nu}.$$

Part b)

Remembering that:

$$\delta^{\mu}{}_{\nu} \equiv \begin{cases} 1 & \mu = \nu \\ 0 & \mu \neq \nu \end{cases}$$

we can show:

$$\delta^{\mu}{}_{\mu} = \delta^{0}{}_{0} + \delta^{1}{}_{1} + \delta^{2}{}_{2} + \delta^{3}{}_{3}$$

= 1 + 1 + 1 + 1
= 4.

Question 2.

Part a)

We want to show that $\eta_{\mu\nu}F^{\mu\nu} = -\eta_{\mu\nu}F^{\mu\nu}$ and therefore $\eta_{\mu\nu}F^{\mu\nu} = 0$. Because $F^{\mu\nu}$ is antisymmetric $(F^{\mu\nu} = -F^{\nu\mu})$, we can write that:

(5)
$$\eta_{\mu\nu}F^{\mu\nu} = -\eta_{\mu\nu}F^{\nu\mu}.$$

Similarly, $\eta_{\mu\nu}$ is symmetric $(\eta_{\mu\nu} = \eta_{\nu\mu})$ and so:

(6)
$$\eta_{\mu\nu}F^{\mu\nu} = -\eta_{\mu\nu}F^{\nu\mu} = -\eta_{\nu\mu}F^{\nu\mu}$$

Finally, as ν and μ are bound/dummy indices in this equation, we can flip their order without consequence (work this out if you don't believe it). This gives us:

$$\eta_{\mu\nu}F^{\mu\nu} = -\eta_{\mu\nu}F^{\mu\nu},$$

which is only possible if $\eta_{\mu\nu}F^{\mu\nu} = 0.$

Part b)

(7)

If we make the substitution $p^{\mu}p_{\mu} = \eta_{\mu\nu}p^{\nu}p^{\mu}$ our derivative becomes:

$$\frac{d}{d\tau} \left(p^{\mu} p_{\mu} \right) = \frac{d}{\frac{d\tau}{1}} \left(\eta_{\mu\nu} p^{\nu} p^{\mu} \right).$$

 $\eta_{\mu\nu}$ has no τ dependence, and so applying the product rule yields:

$$\frac{d}{d\tau} (\eta_{\mu\nu} p^{\nu} p^{\mu}) = \eta_{\mu\nu} \left(\frac{dp^{\nu}}{d\tau} p^{\mu} + p^{\nu} \frac{dp^{\mu}}{d\tau} \right)
= \eta_{\mu\nu} \left(q F^{\nu\sigma} \eta_{\sigma\alpha} u^{\alpha} p^{\mu} + p^{\nu} q F^{\mu\sigma} \eta_{\sigma\alpha} u^{\alpha} \right).$$

Now we take advantage of the fact that $p^{\mu} = mu^{\mu}$ before rearranging our terms:

$$\begin{aligned} \frac{d}{d\tau} \left(\eta_{\mu\nu} p^{\nu} p^{\mu} \right) &= \eta_{\mu\nu} \left(q F^{\nu\sigma} \eta_{\sigma\alpha} u^{\alpha} m u^{\mu} + m u^{\nu} q F^{\mu\sigma} \eta_{\sigma\alpha} u^{\alpha} \right) \\ &= m q \left(F^{\nu\sigma} \eta_{\sigma\alpha} \eta_{\mu\nu} u^{\alpha} u^{\mu} + F^{\mu\sigma} \eta_{\sigma\alpha} \eta_{\mu\nu} u^{\nu} u^{\alpha} \right) \\ &= m q \left(F^{\nu\sigma} u_{\sigma} u_{\nu} + F^{\mu\sigma} u_{\mu} u_{\sigma} \right) \\ &= m q \left(F^{\rho\sigma} u_{\rho} u_{\sigma} + F^{\rho\sigma} u_{\rho} u_{\sigma} \right). \end{aligned}$$

Now just as in part **a**) we use the facts that $F^{\rho\sigma} = -F^{\sigma\rho}$ and $F^{\rho\sigma}u_{\rho}u_{\sigma} = F^{\sigma\rho}u_{\sigma}u_{\rho}$ to write:

$$\frac{d}{d\tau} (\eta_{\mu\nu} p^{\nu} p^{\mu}) = mq \left(F^{\rho\sigma} u_{\rho} u_{\sigma} - F^{\sigma\rho} u_{\sigma} u_{\rho} \right)$$
$$= mq \left(F^{\rho\sigma} u_{\rho} u_{\sigma} - F^{\rho\sigma} u_{\rho} u_{\sigma} \right).$$
$$= 0.$$