PHYS 480/581
 General Relativity

Extra Problems \#4

Question 1.

The electromagnetic Lagrangian is given by $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+A_{\mu} J^{\mu}$, where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and J^{μ} is the electric current.
(a) Show that

$$
\begin{equation*}
\frac{\partial F_{\alpha \beta}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}-\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu} \tag{1}
\end{equation*}
$$

(b) Use the above to show that

$$
\begin{equation*}
\frac{\partial\left(F_{\alpha \beta} F^{\alpha \beta}\right)}{\partial\left(\partial_{\mu} A_{\nu}\right)}=4 F^{\mu \nu} \tag{2}
\end{equation*}
$$

(c) Use the fact that A_{μ} satisfies the Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial A_{\nu}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}\right)=0 \tag{3}
\end{equation*}
$$

and the results above to derive 2 of Maxwell's equations

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=-J^{\nu} . \tag{4}
\end{equation*}
$$

