PHYS 480/581
 General Relativity

Extra Problems \#5

Question 1.

The metric for a two-sphere is

$$
\begin{equation*}
d s^{2}=a^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \tag{1}
\end{equation*}
$$

where a the the radius of the sphere. This metric tells you how to compute distances on the surface of a sphere of constant radius. Now, imagine that there is a rank- 4 tensor \boldsymbol{R} living on this two-sphere, with the following properties

$$
\begin{equation*}
R_{\rho \sigma \mu \nu}=-R_{\sigma \rho \mu \nu}, \quad R_{\rho \sigma \mu \nu}=-R_{\rho \sigma \nu \mu}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\rho \sigma \mu \nu}=R_{\mu \nu \rho \sigma} . \tag{3}
\end{equation*}
$$

where here $\rho, \sigma, \mu, \nu=\theta$ or ϕ. Say I give you one component of this tensor

$$
\begin{equation*}
R_{\phi \theta \phi}^{\theta}=\sin ^{2} \theta . \tag{4}
\end{equation*}
$$

(a) Using the properties given above and Eq. (4), find all 16 components of \boldsymbol{R} with all four lower indices, i.e., $R_{\rho \sigma \mu \nu}$.
(b) Define the second-rank tensor $\tilde{\boldsymbol{R}}$ with components given by

$$
\begin{equation*}
\tilde{R}_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha} . \tag{5}
\end{equation*}
$$

Find the four components of $\tilde{\boldsymbol{R}}$.
(c) Find the trace of $\tilde{\boldsymbol{R}}, \tilde{R}^{\mu}{ }_{\mu}$.

