PHYS 480/581 General Relativity

Extra Problems \#6

Question 1.

Let's consider the metric

$$
\begin{equation*}
d s^{2}=-d t^{2}+[f(q)]^{2} d q^{2} \tag{1}
\end{equation*}
$$

where $f(q)$ is an arbitrary function of the spatial coordinate q.
(a) Derive both the t and q components of the geodesic equation, using the proper time τ as the independent variable.
(b) Show that the t component of the geodesic equation implies that

$$
\begin{equation*}
\frac{d t}{d \tau}=\text { constant } \tag{2}
\end{equation*}
$$

(c) From the q component of the geodesic equation, show that

$$
\begin{equation*}
f \frac{d q}{d \tau}=\text { constant } \tag{3}
\end{equation*}
$$

Hint: use the fact that $\mathbf{u} \cdot \mathbf{u}=-1$, with $\mathbf{u} \equiv d x^{\mu} / d \tau$. Use the above to argue that the trajectory of a free particle in this spacetime obeys

$$
\begin{equation*}
\frac{d q}{d t}=\frac{\text { constant }}{f} \tag{4}
\end{equation*}
$$

(d) Define a new coordinate system (t, x) with $x=F(q)$, where F is the antiderivative of $f(q)$ (that is, $d F / d q=f(q)$). Show that the metric given in Eq. (11) above, once transformed to the (t, x) coordinates, is simply the metric for flat (2D) spacetime.

