PHYS 480/581 General Relativity

Extra Problems \#6

Question 1.

Let's consider the metric

$$
\begin{equation*}
d s^{2}=-d t^{2}+[f(q)]^{2} d q^{2} \tag{1}
\end{equation*}
$$

where $f(q)$ is an arbitrary function of the spatial coordinate q.
(a) Derive both the t and q components of the geodesic equation, using the proper time τ as the independent variable.

Solutions:

One way to do this is to first compute the Christoffel symbols. Since the metric is diagonal in the t, q coordinates, the Christoffels with an upper t index are

$$
\begin{equation*}
\Gamma_{\mu \nu}^{t}=\frac{1}{2} g^{t t}\left(\partial_{\mu} g_{\nu t}+\partial_{\nu} g_{t \mu}-\partial_{t} g_{\mu \nu}\right) . \tag{2}
\end{equation*}
$$

Given that $g_{t t}=-1, g_{t q}=0$, and $\partial_{t} g_{q q}=0$, this is always zero for all choices of μ, ν. Thus, $\Gamma_{t t}^{t}=\Gamma_{t q}^{t}=\Gamma_{q t}^{t}=\Gamma_{q q}^{t}=0$. The Christoffels with an upper q index are

$$
\begin{equation*}
\Gamma_{\mu \nu}^{q}=\frac{1}{2} g^{q q}\left(\partial_{\mu} g_{\nu q}+\partial_{\nu} g_{q \mu}-\partial_{q} g_{\mu \nu}\right) \tag{3}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\Gamma_{t t}^{q} & =\frac{1}{2} g^{q q}\left(\partial_{t} g_{t q}+\partial_{t} g_{q t}-\partial_{q} g_{t t}\right)=0 \tag{4}\\
\Gamma_{t q}^{q}= & \frac{1}{2} g^{q q}\left(\partial_{t} g_{q q}+\partial_{q} g_{q t}-\partial_{q} g_{t q}\right)=\Gamma_{q t}^{q}=0 \tag{5}\\
\Gamma_{q q}^{q} & =\frac{1}{2} g^{q q}\left(\partial_{q} g_{q q}+\partial_{q} g_{q q}-\partial_{q} g_{q q}\right) \\
& =\frac{1}{2} g^{q q} \partial_{q} g_{q q} \\
& =\frac{1}{2 f^{2}(q)} 2 f(q) \frac{d f(q)}{d q} \\
& =\frac{1}{f(q)} \frac{d f(q)}{d q} \tag{6}
\end{align*}
$$

So, only one Christoffel connection coefficients is nonzero. So the two components of the geodesic equation are

$$
\begin{equation*}
\frac{d^{2} t}{d \tau^{2}}=0, \quad \frac{d^{2} q}{d \tau^{2}}+\frac{1}{f(q)} \frac{d f(q)}{d q}\left(\frac{d q}{d \tau}\right)^{2}=0 \tag{7}
\end{equation*}
$$

(b) Show that the t component of the geodesic equation implies that

$$
\begin{equation*}
\frac{d t}{d \tau}=\text { constant } \tag{8}
\end{equation*}
$$

Solutions:

The t component of the geodesic equation implies that

$$
\begin{equation*}
\frac{d}{d \tau}\left(\frac{d t}{d \tau}\right)=0 \Rightarrow \frac{d t}{d \tau}=\text { constant }=C . \tag{9}
\end{equation*}
$$

(c) From the q component of the geodesic equation, show that

$$
\begin{equation*}
f \frac{d q}{d \tau}=\text { constant } \tag{10}
\end{equation*}
$$

Hint: use the fact that $\mathbf{u} \cdot \mathbf{u}=-1$, with $\mathbf{u} \equiv d x^{\mu} / d \tau$. Use the above to argue that the trajectory of a free particle in this spacetime obeys

$$
\begin{equation*}
\frac{d q}{d t}=\frac{\text { constant }}{f} \tag{11}
\end{equation*}
$$

Solutions:

For the q equation, we first need to realize that

$$
\begin{equation*}
g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=-1=g_{t t}\left(\frac{d t}{d \tau}\right)^{2}+g_{q q}\left(\frac{d q}{d \tau}\right)^{2}=-C^{2}+f^{2}(q)\left(\frac{d q}{d \tau}\right)^{2} \tag{12}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
f(q)\left(\frac{d q}{d \tau}\right)= \pm \sqrt{-1+C^{2}}=\text { constant } \tag{13}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{d q}{d t}=\frac{d q}{d \tau} \frac{d \tau}{d t}= \pm \frac{\sqrt{-1+C^{2}}}{C f(q)} . \tag{14}
\end{equation*}
$$

(d) Define a new coordinate system (t, x) with $x=F(q)$, where F is the antiderivative of $f(q)$ (that is, $d F / d q=f(q)$). Show that the metric given in Eq. (1) above, once transformed to the (t, x) coordinates, is simply the metric for flat (2D) spacetime.

Solutions:

If we perform a coordinate transformation $x=F(q)$, such that $d F / d q=f(q)$. We then have

$$
\begin{equation*}
d x=\frac{d F}{d q} d q=f(q) d q \tag{15}
\end{equation*}
$$

And the metric is then

$$
\begin{equation*}
d s^{2}=-d t^{2}+[f(q)]^{2} d q^{2}=-d t^{2}+d x^{2}, \tag{16}
\end{equation*}
$$

which is just the Minkowski metric. So, this spacetime is equivalent to flat spacetime.

