PHYS 480/581 General Relativity

Extra Problems #9

Question 1.

Consider the action of a massive free scalar field ϕ

$$S_{\phi} = \int d^4x \sqrt{-g} \left[-\frac{1}{2} g^{\mu\nu} (\nabla_{\mu}\phi) (\nabla_{\nu}\phi) - \frac{1}{2} m^2 \phi^2 \right], \tag{1}$$

where m is the mass of the field and g is the determinant of the metric.

(a) Using the definition of the stress-energy tensor,

$$T_{\mu\nu} = -2\frac{1}{\sqrt{-g}}\frac{\delta S_{\phi}}{\delta g^{\mu\nu}},\tag{2}$$

compute $T_{\mu\nu}$ for the scalar field ϕ . You may find the identity $\ln(\det M) = \operatorname{Tr}(\ln M)$ useful (where M is a square non-singular matrix).

(b) Show that this stress energy tensor satisfies the dominant energy condition $(T_{\mu\nu}t^{\mu}t^{\nu} \ge 0$ and $T_{\mu\nu}T^{\nu}_{\ \lambda}t^{\mu}t^{\lambda} \le 0$ for all timelike vectors t^{μ}), and thus the weak $(T_{\mu\nu}t^{\mu}t^{\nu} \ge 0)$ and the null energy $(T_{\mu\nu}l^{\mu}l^{\nu} \ge 0$ for null vectors l^{μ}) conditions.