Question 1:
a)

We have

$$
\begin{aligned}
S_{\phi} & =\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu v}\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right)-\frac{1}{2} m^{2} \phi^{2}\right] \\
\Rightarrow \quad \delta S_{\phi} & =\int d^{4} x\left[-\frac{1}{2} g^{\mu v}\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right)-\frac{1}{2} m^{2} \phi^{2}\right] \delta \sqrt{-y}-\int d^{4} x \sqrt{-g} \frac{1}{2}\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right) \delta g^{\mu v}
\end{aligned}
$$

We know that if we can write this as $\delta S_{\phi}=\int d^{4} x A_{r v} \delta g^{\mu v}$, then $A=\frac{\delta S_{\phi}}{\delta y^{\mu \nu}}$.
The end term is already in this form, so we just need to write $\delta \sqrt{-g}$ in terms of $\delta y^{\mu v}$.
$\delta \sqrt{-g}=\frac{-1}{2 \sqrt{-g}} \delta y$, so we just need δg. we can find δy using $\ln y=\operatorname{Tr}(\operatorname{mg} \boldsymbol{y} v)$.

$$
\begin{aligned}
& \ln (g)=\operatorname{Tr}\left(m g_{\mu v}\right) \\
& \delta \ln (y)=\operatorname{Tr}\left(\delta \operatorname{m} y_{\mu v}\right) \\
& \frac{1}{g} \delta g=g^{\mu v} \delta g_{\mu v} \\
& \delta g=g g^{\mu \nu} \delta g_{\mu v}
\end{aligned}
$$

$\delta g_{\mu v}$ can be quickly found from the definition of the inverse metric

$$
\begin{aligned}
\delta_{v}^{\mu} & =y^{\mu \sigma} g_{\sigma v} \\
\Rightarrow 0 & =y^{\mu \sigma} \delta y_{\sigma v}+g_{\sigma v} \delta y^{\mu \sigma} \\
g_{\rho \mu} g^{\mu \sigma} \delta g_{\sigma v} & =-y_{\rho_{\mu}} g_{\sigma v} \delta g^{\mu \sigma} \\
\delta g_{\rho v} & =-g_{\rho \mu} g_{\sigma v} \delta y^{\mu \sigma} \quad \text { Renaming } \rho \leftrightarrow \mu \\
\delta g_{, N} & =-y_{\mu \rho} g_{\sigma v} \delta g^{\rho \sigma} \quad
\end{aligned}
$$

Putting this all together,

$$
\begin{aligned}
\delta \sqrt{-g} & =\frac{-1}{2 \sqrt{-g}} \delta g \\
& =\frac{-1}{2 \sqrt{-g}}\left[g_{g}^{\mu v} \delta g_{\mu \sim}\right] \\
& =\frac{-1}{2 \sqrt{-g}}\left[g_{g}^{\mu \nu}\left(-g_{\mu \rho} g_{\sigma v} \delta g^{\rho \sigma}\right)\right] \\
\delta \sqrt{-g} & =-\frac{1}{2} \sqrt{-g} g_{\rho \sigma} \delta g^{\rho \sigma}
\end{aligned}
$$

Now, we Play this into δS_{ϕ} above.

$$
\begin{aligned}
\delta S_{\phi} & =\int d^{4} x\left[\frac{-1}{2} q^{\mu v}\left(\nabla_{,} \phi\right)\left(\nabla_{v} \phi\right)-\frac{1}{2} m^{2} \phi^{2}\right] \delta \sqrt{-y}-\int d^{4} x \sqrt{-g} \frac{1}{2}\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right) \delta y^{\mu v} \\
& =\int d^{4} x\left[\frac{-1}{2} q^{\prime \sigma}\left(\nabla_{p} \phi\right)\left(\nabla_{\sigma} \phi\right)-\frac{1}{2} m^{2} \phi^{2}\right]\left(-\frac{1}{2} \sqrt{-g} g_{\mu v} \delta g^{\mu v}\right)-\int d^{4} x \sqrt{-g} \frac{1}{2}\left(\nabla_{\nu} \phi\right)\left(\nabla_{v} \phi\right) \delta g^{-v} \\
& =\int d^{4} x \frac{1}{2} \sqrt{-g}\left[\frac{1}{2} q^{\rho \sigma} g_{\mu v}\left(\nabla_{\rho} \phi\right)\left(\nabla_{\sigma} \phi\right)-\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right)+\frac{1}{2} g_{\mu v} m^{2} \phi^{2}\right] \delta g^{-v} \\
\Rightarrow & \frac{\delta S_{\phi}}{\delta g^{\mu v}}=\frac{1}{2} \sqrt{-g}\left[\frac{1}{2} q^{p \sigma_{g}} g_{\sigma v}\left(\nabla_{\rho} \phi\right)\left(\nabla_{r} \phi\right)-\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right)+\frac{1}{2} g_{\mu v} m^{2} \phi^{2}\right]
\end{aligned}
$$

This gives us T_{μ}.

$$
\begin{aligned}
& T_{\mu v}=-2 \frac{1}{\sqrt{-}} \frac{\delta S_{q}}{\delta g^{m v}} \\
& T_{\mu v}=-\frac{1}{2} q^{p \sigma_{g_{\mu v}}}\left(\nabla_{\rho} \phi\right)\left(\nabla_{\sigma} \phi\right)+\left(\nabla_{\mu \phi} \phi\right)\left(\nabla_{v} \phi\right)-\frac{1}{2} g_{\mu v} m^{2} \phi^{2}
\end{aligned}
$$

b) For time like vectors $t^{\mu}, \quad g_{\mu v} t^{\mu} t^{\nu}<0$.

$$
\begin{aligned}
T_{\mu v} t^{\mu} t^{v} & =\left[-\frac{1}{2} q^{\rho} \sigma_{\mu v}\left(\nabla_{\rho} \phi\right)\left(\nabla_{\sigma} \phi\right)+\left(\nabla_{\mu} \phi\right)\left(\nabla_{v} \phi\right)-\frac{1}{2} g_{\mu v} m^{2} \phi^{2}\right] t^{\mu} t^{v} \\
& =-\left(g_{\mu v} t^{\mu} t^{v}\right) \frac{1}{2} g^{\phi \sigma}\left(\nabla_{\rho} \phi\right)\left(\nabla_{\sigma} \phi\right)+t^{\mu} t^{2}\left(\nabla_{\mu} \phi\right)\left(\nabla_{\nu} \phi\right)-\left(g_{\mu v} t^{2} t^{v}\right) m^{2} \phi^{2} \\
& =\left(-g_{\mu v} t^{\mu} t^{v}\right) \frac{1}{2}\left(\nabla^{\rho} \phi\right)\left(\nabla_{\rho} \phi\right)+\left[t^{n} \nabla_{\mu} \phi\right]^{2}+\left(-g_{\mu \nu} t^{-} t^{v}\right) m^{2} \phi^{2}
\end{aligned}
$$

$$
\text { In a LOF, } \quad g_{m}=3 \mu, \quad t^{\mu}=(1,0,0,0)
$$

$$
\begin{aligned}
T_{\mu \nu} t^{\mu} t^{v} & =\left(-\eta_{\mu \nu} t^{\mu} t^{v}\right) \frac{1}{2}\left(\nabla^{\rho} \phi\right)\left(\nabla_{\rho} \phi\right)+\left[t^{\mu} \nabla_{\mu} \phi\right]^{2}+\left(-\eta_{\mu \nu} t^{\mu} t^{\nu}\right) m^{2} \phi^{2} \\
& \left.=\frac{1}{2}\right\}^{\rho \sigma}\left(\nabla_{\rho} \phi\right)\left(\nabla_{\sigma} \phi\right)+\left[\nabla_{t} \phi\right]^{2}+m^{2} \phi^{2} \\
& =\frac{1}{2}\left[-\left(\nabla_{t} \phi\right)^{2}+\left(\nabla_{x} \phi\right)^{2}+\left(\nabla_{y} \phi\right)^{2}+\left(\nabla_{2} \phi\right)^{2}\right]+\left[\nabla_{t} \phi\right]^{2}+m^{2} \phi^{2} \\
T_{\mu \nu} t^{\mu} t^{v} & =\frac{1}{2}\left[\nabla_{t} \phi\right]^{2}+\frac{1}{2}\left[\left(\nabla_{x} \phi\right)^{2}+\left(\nabla_{y} \phi\right)^{2}+\left(\nabla_{2} \phi\right)^{2}\right]+m^{2} \phi^{2}>0
\end{aligned}
$$

Now for $T_{\mu v} T_{\lambda}^{\nu} t^{\mu} t^{\lambda}$

$$
\begin{aligned}
& T_{\lambda}^{v}=g^{v \alpha} T_{\alpha \lambda} \\
& T_{\nu} T_{\lambda}^{\nu} t^{\lambda} t^{\lambda}=g^{\nu \alpha} T_{\nu \nu} T_{\alpha \lambda} t^{\mu} t^{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{4}\left(-v_{\mu, 1} t^{\mu} t^{\lambda}\right)\left[\left(\nabla^{\rho} \phi\right)\left(\nabla_{,} \phi\right)\right]^{2}-\frac{1}{2}\left(\nabla \nabla_{\phi} \phi\right)\left(\nabla_{p} \phi\right)\left[t^{\mu} \nabla_{,} \phi\right]^{2}-\frac{1}{4}\left(-\partial_{\lambda} t^{\mu} t^{\lambda}\right)\left(\nabla^{\rho} \phi\right)\left(\nabla_{p} \phi\right) m^{2} \phi^{2} \\
& +\left(\nabla_{\phi} \phi\right)\left(\nabla_{\phi \phi}\right)\left[t^{2} \nabla_{,} \phi\right]^{2}-\frac{1}{2}\left(\nabla_{\phi}\right)\left(\nabla_{p} \phi\right)\left[t^{\mu} \nabla_{,} \phi\right]^{2}-\frac{1}{2}\left[t^{2} \nabla_{,} \phi\right]^{2} m^{2} \phi^{2} \\
& -\frac{1}{4}\left(-y_{m} t^{\mu} t^{\lambda}\right) m^{4} \phi^{4}-\frac{1}{4}\left(-y_{m \lambda} t^{\mu} t^{\lambda}\right)(\nabla P \phi)\left(\nabla_{\rho \phi}\right) m^{2} \phi^{2}-\frac{1}{2}\left[t^{\mu} \nabla-\phi\right]^{2} m^{2} \phi^{2} \\
& =-\frac{1}{4}\left(-\eta_{\mu-1} t^{\mu} t^{\lambda}\right)\left[\left(\nabla^{\rho} \phi\right)(0, \phi)\right]^{2}-\frac{1}{2}\left(-\partial_{\lambda} t^{\mu} t^{\lambda}\right)\left(\nabla^{\rho} \phi\right)\left(0_{p} \phi\right) m^{2} \phi^{2}-\left[t^{2} \nabla_{\mu} \phi\right]^{2} m^{2} \phi^{2}-\frac{1}{4}\left(-\eta_{\mu} t^{\mu} t^{\lambda}\right) m^{4} \phi^{\phi}
\end{aligned}
$$

We can simplify terms including $A=(0 \phi \phi)(0, \phi)$, $\frac{1}{4} A^{2}+\frac{1}{2} A m^{2} \phi^{2}+\frac{1}{4} m^{4} \phi^{4}=\frac{1}{4}\left(A+m^{2} \phi^{2}\right)^{2}$

$$
T_{\mu} T_{\lambda}^{\nu} t^{\mu} t^{\lambda}=-\frac{1}{4}\left(-y_{\mu \nu} t^{\mu} t^{\nu}\right)\left[\left(\nabla^{\circ} \phi\right)\left(\nabla_{p} \phi\right)+m^{2} \phi^{2}\right]^{2}-\left[t^{\mu} \nabla_{\mu} \phi\right]^{2} m^{2} \phi^{2} \leq 0
$$

