PHYS 480/581
 General Relativity

Homework Assignment 10
Due date: Friday 04/05/2024 5pm, submitted electronically on UNM Canvas

Question 1 (4 points).
In class, we have outlined the key steps to derive the Reissner-Nordström solution to the Einstein equation, a spherically symmetric solution around a compact object of mass M and electric charge Q. Using the symmetries of the problem, our starting point was a trial metric of the form

$$
\begin{equation*}
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{1}
\end{equation*}
$$

The stress-energy tensor appearing on the right-hand side of the Einstein equation was that of electromagnetism

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{4} g_{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}+g^{\alpha \gamma} F_{\mu \alpha} F_{\nu \gamma}, \tag{2}
\end{equation*}
$$

where

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E(r) & 0 & 0 \tag{3}\\
E(r) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $E(r)$ is the electric field in the radial direction. Since the trace $T=g^{\mu \nu} T_{\mu \nu}$ of the above stress-energy tensor is zero, the Einstein equation reduces to $R_{\mu \nu}=8 \pi G T_{\mu \nu}$ in this case.
(a) Using the above stress-energy tensor, show that

$$
\begin{equation*}
T_{t t}=\frac{E^{2}(r)}{2 B}, \quad \text { and } \quad T_{\theta \theta}=\frac{r^{2} E^{2}(r)}{2 A B} . \tag{4}
\end{equation*}
$$

(b) Using the $t t$ and $r r$ components of the Einstein equation, we showed that $B(r)=1 / A(r)$. Using Maxwell's equation $\nabla_{\mu} F^{\nu \mu}=0$, we also showed that

$$
\begin{equation*}
E(r)=\frac{Q}{4 \pi r^{2}}, \tag{5}
\end{equation*}
$$

(remember that $c=1$ here, which automatically sets $\epsilon_{0}=\mu_{0}=1$, and results in the electric charge being dimensionless in these units). Use the $\theta \theta$ component of the Einstein equation to show that $A(r)$ obeys the following differential equation

$$
\begin{equation*}
\frac{d(r A)}{d r}=1-\frac{G Q^{2}}{4 \pi r^{2}} \tag{6}
\end{equation*}
$$

(c) Integrating Eq. (6) on both sides and demanding that the metric reduces to the Schwarzschild metric as $Q \rightarrow 0$ yields

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 G M}{r}+\frac{G Q^{2}}{4 \pi r^{2}}\right) d t^{2}+\left(1-\frac{2 G M}{r}+\frac{G Q^{2}}{4 \pi r^{2}}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \tag{7}
\end{equation*}
$$

which is the desired Reissner-Nordström solution. Since event horizons occur when $g_{t t}=0$, show that this spacetime has two event horizons when $Q^{2}<4 \pi G M^{2}$. Next, show that for $Q^{2}>4 \pi G M^{2}$, no event horizon exists. Black holes with $Q^{2}=4 \pi G M^{2}$ are said to be extremal.

Question 2 (2 points).
Moore Problem 10.2

Question 3 (3 points).
Moore Problem 10.9

