
Physics 480/581
General Relativity

Homework Assignment 10 Solutions

Question 1 (4 points).

In class, we have outlined the key steps to derive the Reissner-Nordström solution to the Einstein
equation, a spherically symmetric solution around a compact object of mass M and electric charge
Q. Using the symmetries of the problem, our starting point was a trial metric of the form

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

The stress-energy tensor appearing on the right-hand side of the Einstein equation was that of
electromagnetism

Tµν = −1

4
gµνF

αβFαβ + gαγFµαFνγ , (2)

where

Fµν =


0 −E(r) 0 0

E(r) 0 0 0
0 0 0 0
0 0 0 0

 , (3)

where E(r) is the electric field in the radial direction. Since the trace T = gµνTµν of the above
stress-energy tensor is zero, the Einstein equation reduces to Rµν = 8πGTµν in this case.

(a) Using the above stress-energy tensor, show that

Ttt =
E2(r)

2B
, and Tθθ =

r2E2(r)

2AB
. (4)

Solutions:
From the above, we have Ftr = −E(r), and we showed in class that F tr = E(r)/(AB). Thus,

Ttt = −1

4
gttF

αβFαβ + gαγFtαFtγ

=
1

4
A(F trFtr + F rtFrt) + grrFtrFtr

=
1

4
A(− E

AB
E − E

AB
E) +

1

B
E2

= −1

2

E2

B
+
E2

B

=
E2

2B
. (5)

1
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Tθθ = −1

4
gθθF

αβFαβ + gαγFθαFθγ

= −1

4
r2(F trFtr + F rtFrt) + 0

= −1

4
r2(− E

AB
E − E

AB
E)

=
r2E2

2AB
. (6)

(b) Using the tt and rr components of the Einstein equation, we showed that B(r) = 1/A(r).
Using Maxwell’s equation ∇µF νµ = 0, we also showed that

E(r) =
Q

4πr2
, (7)

(remember that c = 1 here, which automatically sets ε0 = µ0 = 1, and results in the electric
charge being dimensionless in these units). Use the θθ component of the Einstein equation to
show that A(r) obeys the following differential equation

d(rA)

dr
= 1− GQ2

4πr2
. (8)

Solutions:
The θθ component of the Einstein equation is (using Eq. (23.6c) in Moore)

Rθθ = 8πGTθθ

− r

2AB

dA

dr
+

r

2B2

dB

dr
+ 1− 1

B
= 8πG

r2E2

2AB

−r
2

dA

dr
− r

2

dA

dr
+ 1−A = 4πGr2E2

r
dA

dr
+A = 1− 4πGr2E2

d(rA)

dr
= 1− 4πGr2

(
Q

4πr2

)2

d(rA)

dr
= 1− GQ2

4πr2
. (9)

(c) Integrating Eq. (8) on both sides and demanding that the metric reduces to the Schwarzschild
metric as Q→ 0 yields

ds2 = −
(

1− 2GM

r
+
GQ2

4πr2

)
dt2 +

(
1− 2GM

r
+
GQ2

4πr2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (10)

which is the desired Reissner-Nordström solution. Since event horizons occur when gtt = 0,
show that this spacetime has two event horizons when Q2 < 4πGM2. Next, show that for
Q2 > 4πGM2, no event horizon exists.
Solutions:
The location of the event horizon(s) is given by solving(

1− 2GM

r
+
GQ2

4πr2

)
= 0 (11)
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This is basically a quadratic equation for r

r2 − 2GMr +
GQ2

4π
= 0, (12)

which means that

r =
2GM ±

√
4G2M2 − 4GQ2/4π

2

= GM ±
√
G2M2 −GQ2/4π. (13)

Thus, if Q2 < 4πGM2, the square root is real and there are two event horizons located at
r = GM ±

√
G2M2 −GQ2/4π. On the other hand, if Q2 > 4πGM2, the square root is

imaginary and there is no physical event horizon. This case is considered to be unphysical
since this would mean that the singularity at r = 0 is “naked” (i.e. not hidden behind an event
horizon). This has lead people to speculate that the maximum electric charge that a black
hole can have is Q2 = 4πGM2.

Question 2 (2 points).

Moore Problem 10.2
Solutions:
The proper time for a purely radial trajectory is given by

∆τ =

∫ √
−ds2

=

∫ √(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2

=

∫
dr

√(
1− 2GM

r

)(
dt

dr

)2

−
(

1− 2GM

r

)−1

. (14)

Now, what is dt/dr? We know that the relativistic energy per unit mass e is a constant of motion
and is given by

e =

(
1− 2GM

r

)
dt

dτ
, (15)

which for a trajectory starting at rest at r =∞ will be e = 1 (since dτ → dt there). We thus have,

dt

dr
=
dt

dτ

dτ

dr
=

(
1− 2GM

r

)−1 dτ

dr
. (16)

Also, since ` = 0 for purely radial motion, Eq. 10.8 in Moore implies that(
dr

dτ

)2

=
2GM

r
. (17)

We thus have (
dt

dr

)2

=

(
1− 2GM

r

)−2(2GM

r

)−1

. (18)



Physics 480/581 Homework Assignment 10

Substituting this in the above

∆τ =

∫
dr

√(
1− 2GM

r

)−1(2GM

r

)−1

−
(

1− 2GM

r

)−1

=

∫ 10GM

2GM
dr

√
r

2GM

=
1√

2GM

2

3
r3/2

∣∣∣∣∣
10GM

2GM

=

√
2GM

3

(
103/2 − 23/2

)
≈ 13.57GM. (19)

Question 3 (3 points).

Moore Problem 10.9
Solutions:

(a) By the definition of the radial coordinate, the circumference of the orbit is C = 2πr. We thus
have C = 20πGM . For a solar mass, we know that GM� = 1.477 km. For 106M�, this yields

C = 20πGM = 20π106GM� ≈ 9.28× 107km. (20)

(b) For a stable circular orbit, its radius is given by

rc =
6GM

1−
√

1− 12(GM/`)2
. (21)

We can solve this for ` √
1− 12(GM/`)2 = 1− 6GM

rc

1− 12(GM/`)2 =

(
1− 6GM

rc

)2

(GM/`)2 =
1−

(
1− 6GM

rc

)2
12

(GM/`)2 =
r2c − (rc − 6GM)2

12r2c

(GM/`)2 =
GMrc − 3(GM)2

r2c

`2 =
r2cGM

rc − 3GM
. (22)



Physics 480/581 Homework Assignment 10

Thus,

` =

(
(10GM)2GM

10GM − 3GM

)1/2

= GM

(
100

7

)1/2

= 106GM�
10√

7
= 5.58× 106km. (23)

The effective energy per unit mass for a circular orbit is

Ẽ = −GM
r

+
`2

2r2
− GM`2

r3
. (24)

Plugging ` given above and r = 10GM yields

Ẽ ≈ −0.0429. (25)

(c) Since ` = r2dφ/dτ , we have

τ =
r2c
`

∫ 2π

0
dφ =

2πr2c
`

= 2πrc

√
rc
GM

− 3 = 20π
√

7GM ≈ 2.46× 108km. (26)

We can divide by the speed of light c = 2.99× 105 km/s to obtain τ ≈ 819 s.


