Physics 480/581
General Relativity

Homework Assignment 10 Solutions

Question 1 (4 points).

In class, we have outlined the key steps to derive the Reissner-Nordstrom solution to the Einstein
equation, a spherically symmetric solution around a compact object of mass M and electric charge
Q. Using the symmetries of the problem, our starting point was a trial metric of the form

ds® = —A(r)dt* + B(r)dr? + r*(d6? + sin® §d¢?). (1)

The stress-energy tensor appearing on the right-hand side of the Einstein equation was that of
electromagnetism
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where E(r) is the electric field in the radial direction. Since the trace T" = ¢g""T),, of the above
stress-energy tensor is zero, the Einstein equation reduces to R, = 87GT),, in this case.
(a) Using the above stress-energy tensor, show that
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Solutions:
From the above, we have Fy,, = —E(r), and we showed in class that F*" = E(r)/(AB). Thus,
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(b)
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Using the ¢t and rr components of the Einstein equation, we showed that B(r) = 1/A(r).
Using Maxwell’s equation V,F"* = 0, we also showed that

Q

42’

E(r) (7)
(remember that ¢ = 1 here, which automatically sets g = g = 1, and results in the electric
charge being dimensionless in these units). Use the 80 component of the Einstein equation to
show that A(r) obeys the following differential equation
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Solutions:
The 06 component of the Einstein equation is (using Eq. (23.6¢) in Moore)
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Integrating Eq. on both sides and demanding that the metric reduces to the Schwarzschild
metric as Q — 0 yields
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which is the desired Reissner-Nordstrom solution. Since event horizons occur when gy = 0,
show that this spacetime has two event horizons when Q? < 4rGM?. Next, show that for
Q? > 4rGM?, no event horizon exists.

Solutions:

The location of the event horizon(s) is given by solving

(1 _2GM GQ2> 0 (11)
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This is basically a quadratic equation for r
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which means that
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Thus, if Q? < 47rGM?, the square root is real and there are two event horizons located at
r = GM + \/G2M? — GQ?/4r. On the other hand, if Q* > 47rGM?, the square root is
imaginary and there is no physical event horizon. This case is considered to be unphysical
since this would mean that the singularity at » = 0 is “naked” (i.e. not hidden behind an event
horizon). This has lead people to speculate that the maximum electric charge that a black
hole can have is Q% = 4rGM?.

Question 2 (2 points).

Moore Problem 10.2
Solutions:
The proper time for a purely radial trajectory is given by
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Now, what is dt/dr? We know that the relativistic energy per unit mass e is a constant of motion

and is given by - .
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which for a trajectory starting at rest at 7 = oo will be e = 1 (since dr — dt there). We thus have,

dt  dtdr <1_ 2GM)_1 dr

dr = drdr @ (16)

r

Also, since £ = 0 for purely radial motion, Eq. 10.8 in Moore implies that
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We thus have
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Substituting this in the above
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~ 13.57GM.

Question 3 (3 points).

(19)

Moore Problem 10.9
Solutions:

(a) By the definition of the radial coordinate, the circumference of the orbit is C' = 2mr. We thus
have C' = 207G M. For a solar mass, we know that GMg = 1.477 km. For 106M, this yields

C = 20nGM = 20m10°G My ~ 9.28 x 10"km.

(b) For a stable circular orbit, its radius is given by

B 6GM
11— /1-12(GM/)?

Tc

We can solve this for ¢
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Thus,
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The effective energy per unit mass for a circular orbit is
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Plugging ¢ given above and r = 10GM yields

E ~ —0.0429.

(c) Since £ = r2d¢/dr, we have

2 27 2
2
r= ;/0 dop = 70 = 271y / (;M — 3= 20mVTGM ~ 2.46 x 10°km.

We can divide by the speed of light ¢ = 2.99 x 10° km/s to obtain 7 ~ 819 s.

(23)



