Physics 480/581 General Relativity

Homework Assignment 10 Solutions

Question 1 (4 points).
In class, we have outlined the key steps to derive the Reissner-Nordström solution to the Einstein equation, a spherically symmetric solution around a compact object of mass M and electric charge Q. Using the symmetries of the problem, our starting point was a trial metric of the form

$$
\begin{equation*}
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{1}
\end{equation*}
$$

The stress-energy tensor appearing on the right-hand side of the Einstein equation was that of electromagnetism

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{4} g_{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}+g^{\alpha \gamma} F_{\mu \alpha} F_{\nu \gamma} \tag{2}
\end{equation*}
$$

where

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E(r) & 0 & 0 \tag{3}\\
E(r) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $E(r)$ is the electric field in the radial direction. Since the trace $T=g^{\mu \nu} T_{\mu \nu}$ of the above stress-energy tensor is zero, the Einstein equation reduces to $R_{\mu \nu}=8 \pi G T_{\mu \nu}$ in this case.
(a) Using the above stress-energy tensor, show that

$$
\begin{equation*}
T_{t t}=\frac{E^{2}(r)}{2 B}, \quad \text { and } \quad T_{\theta \theta}=\frac{r^{2} E^{2}(r)}{2 A B} \tag{4}
\end{equation*}
$$

Solutions:

From the above, we have $F_{t r}=-E(r)$, and we showed in class that $F^{t r}=E(r) /(A B)$. Thus,

$$
\begin{align*}
T_{t t} & =-\frac{1}{4} g_{t t} F^{\alpha \beta} F_{\alpha \beta}+g^{\alpha \gamma} F_{t \alpha} F_{t \gamma} \\
& =\frac{1}{4} A\left(F^{t r} F_{t r}+F^{r t} F_{r t}\right)+g^{r r} F_{t r} F_{t r} \\
& =\frac{1}{4} A\left(-\frac{E}{A B} E-\frac{E}{A B} E\right)+\frac{1}{B} E^{2} \\
& =-\frac{1}{2} \frac{E^{2}}{B}+\frac{E^{2}}{B} \\
& =\frac{E^{2}}{2 B} \tag{5}
\end{align*}
$$

$$
\begin{align*}
T_{\theta \theta} & =-\frac{1}{4} g_{\theta \theta} F^{\alpha \beta} F_{\alpha \beta}+g^{\alpha \gamma} F_{\theta \alpha} F_{\theta \gamma} \\
& =-\frac{1}{4} r^{2}\left(F^{t r} F_{t r}+F^{r t} F_{r t}\right)+0 \\
& =-\frac{1}{4} r^{2}\left(-\frac{E}{A B} E-\frac{E}{A B} E\right) \\
& =\frac{r^{2} E^{2}}{2 A B} . \tag{6}
\end{align*}
$$

(b) Using the $t t$ and $r r$ components of the Einstein equation, we showed that $B(r)=1 / A(r)$. Using Maxwell's equation $\nabla_{\mu} F^{\nu \mu}=0$, we also showed that

$$
\begin{equation*}
E(r)=\frac{Q}{4 \pi r^{2}}, \tag{7}
\end{equation*}
$$

(remember that $c=1$ here, which automatically sets $\epsilon_{0}=\mu_{0}=1$, and results in the electric charge being dimensionless in these units). Use the $\theta \theta$ component of the Einstein equation to show that $A(r)$ obeys the following differential equation

$$
\begin{equation*}
\frac{d(r A)}{d r}=1-\frac{G Q^{2}}{4 \pi r^{2}} \tag{8}
\end{equation*}
$$

Solutions:

The $\theta \theta$ component of the Einstein equation is (using Eq. (23.6c) in Moore)

$$
\begin{align*}
R_{\theta \theta} & =8 \pi G T_{\theta \theta} \\
-\frac{r}{2 A B} \frac{d A}{d r}+\frac{r}{2 B^{2}} \frac{d B}{d r}+1-\frac{1}{B} & =8 \pi G \frac{r^{2} E^{2}}{2 A B} \\
-\frac{r}{2} \frac{d A}{d r}-\frac{r}{2} \frac{d A}{d r}+1-A & =4 \pi G r^{2} E^{2} \\
r \frac{d A}{d r}+A & =1-4 \pi G r^{2} E^{2} \\
\frac{d(r A)}{d r} & =1-4 \pi G r^{2}\left(\frac{Q}{4 \pi r^{2}}\right)^{2} \\
\frac{d(r A)}{d r} & =1-\frac{G Q^{2}}{4 \pi r^{2}} . \tag{9}
\end{align*}
$$

(c) Integrating Eq. (8) on both sides and demanding that the metric reduces to the Schwarzschild metric as $Q \rightarrow 0$ yields

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 G M}{r}+\frac{G Q^{2}}{4 \pi r^{2}}\right) d t^{2}+\left(1-\frac{2 G M}{r}+\frac{G Q^{2}}{4 \pi r^{2}}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{10}
\end{equation*}
$$

which is the desired Reissner-Nordström solution. Since event horizons occur when $g_{t t}=0$, show that this spacetime has two event horizons when $Q^{2}<4 \pi G M^{2}$. Next, show that for $Q^{2}>4 \pi G M^{2}$, no event horizon exists.
Solutions:
The location of the event horizon(s) is given by solving

$$
\begin{equation*}
\left(1-\frac{2 G M}{r}+\frac{G Q^{2}}{4 \pi r^{2}}\right)=0 \tag{11}
\end{equation*}
$$

This is basically a quadratic equation for r

$$
\begin{equation*}
r^{2}-2 G M r+\frac{G Q^{2}}{4 \pi}=0 \tag{12}
\end{equation*}
$$

which means that

$$
\begin{align*}
r & =\frac{2 G M \pm \sqrt{4 G^{2} M^{2}-4 G Q^{2} / 4 \pi}}{2} \\
& =G M \pm \sqrt{G^{2} M^{2}-G Q^{2} / 4 \pi} . \tag{13}
\end{align*}
$$

Thus, if $Q^{2}<4 \pi G M^{2}$, the square root is real and there are two event horizons located at $r=G M \pm \sqrt{G^{2} M^{2}-G Q^{2} / 4 \pi}$. On the other hand, if $Q^{2}>4 \pi G M^{2}$, the square root is imaginary and there is no physical event horizon. This case is considered to be unphysical since this would mean that the singularity at $r=0$ is "naked" (i.e. not hidden behind an event horizon). This has lead people to speculate that the maximum electric charge that a black hole can have is $Q^{2}=4 \pi G M^{2}$.

Question 2 (2 points).
Moore Problem 10.2

Solutions:

The proper time for a purely radial trajectory is given by

$$
\begin{align*}
\Delta \tau= & \int \sqrt{-d s^{2}} \\
& =\int \sqrt{\left(1-\frac{2 G M}{r}\right) d t^{2}-\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}} \\
& =\int d r \sqrt{\left(1-\frac{2 G M}{r}\right)\left(\frac{d t}{d r}\right)^{2}-\left(1-\frac{2 G M}{r}\right)^{-1}} . \tag{14}
\end{align*}
$$

Now, what is $d t / d r$? We know that the relativistic energy per unit mass e is a constant of motion and is given by

$$
\begin{equation*}
e=\left(1-\frac{2 G M}{r}\right) \frac{d t}{d \tau} \tag{15}
\end{equation*}
$$

which for a trajectory starting at rest at $r=\infty$ will be $e=1$ (since $d \tau \rightarrow d t$ there). We thus have,

$$
\begin{equation*}
\frac{d t}{d r}=\frac{d t}{d \tau} \frac{d \tau}{d r}=\left(1-\frac{2 G M}{r}\right)^{-1} \frac{d \tau}{d r} . \tag{16}
\end{equation*}
$$

Also, since $\ell=0$ for purely radial motion, Eq. 10.8 in Moore implies that

$$
\begin{equation*}
\left(\frac{d r}{d \tau}\right)^{2}=\frac{2 G M}{r} . \tag{17}
\end{equation*}
$$

We thus have

$$
\begin{equation*}
\left(\frac{d t}{d r}\right)^{2}=\left(1-\frac{2 G M}{r}\right)^{-2}\left(\frac{2 G M}{r}\right)^{-1} . \tag{18}
\end{equation*}
$$

Substituting this in the above

$$
\begin{align*}
\Delta \tau & =\int d r \sqrt{\left(1-\frac{2 G M}{r}\right)^{-1}\left(\frac{2 G M}{r}\right)^{-1}-\left(1-\frac{2 G M}{r}\right)^{-1}} \\
& =\int_{2 G M}^{10 G M} d r \sqrt{\frac{r}{2 G M}} \\
& =\left.\frac{1}{\sqrt{2 G M}} \frac{2}{3} r^{3 / 2}\right|_{2 G M} ^{10 G M} \\
& =\frac{\sqrt{2} G M}{3}\left(10^{3 / 2}-2^{3 / 2}\right) \\
& \approx 13.57 G M . \tag{19}
\end{align*}
$$

Question 3 (3 points).
Moore Problem 10.9

Solutions:

(a) By the definition of the radial coordinate, the circumference of the orbit is $C=2 \pi r$. We thus have $C=20 \pi G M$. For a solar mass, we know that $G M_{\odot}=1.477 \mathrm{~km}$. For $10^{6} M_{\odot}$, this yields

$$
\begin{equation*}
C=20 \pi G M=20 \pi 10^{6} G M_{\odot} \approx 9.28 \times 10^{7} \mathrm{~km} . \tag{20}
\end{equation*}
$$

(b) For a stable circular orbit, its radius is given by

$$
\begin{equation*}
r_{c}=\frac{6 G M}{1-\sqrt{1-12(G M / \ell)^{2}}} \tag{21}
\end{equation*}
$$

We can solve this for ℓ

$$
\begin{align*}
\sqrt{1-12(G M / \ell)^{2}} & =1-\frac{6 G M}{r_{c}} \\
1-12(G M / \ell)^{2} & =\left(1-\frac{6 G M}{r_{c}}\right)^{2} \\
(G M / \ell)^{2} & =\frac{1-\left(1-\frac{6 G M}{r_{c}}\right)^{2}}{12} \\
(G M / \ell)^{2} & =\frac{r_{c}^{2}-\left(r_{c}-6 G M\right)^{2}}{12 r_{c}^{2}} \\
(G M / \ell)^{2} & =\frac{G M r_{c}-3(G M)^{2}}{r_{c}^{2}} \\
\ell^{2} & =\frac{r_{c}^{2} G M}{r_{c}-3 G M} . \tag{22}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\ell=\left(\frac{(10 G M)^{2} G M}{10 G M-3 G M}\right)^{1 / 2}=G M\left(\frac{100}{7}\right)^{1 / 2}=10^{6} G M_{\odot} \frac{10}{\sqrt{7}}=5.58 \times 10^{6} \mathrm{~km} \tag{23}
\end{equation*}
$$

The effective energy per unit mass for a circular orbit is

$$
\begin{equation*}
\tilde{E}=-\frac{G M}{r}+\frac{\ell^{2}}{2 r^{2}}-\frac{G M \ell^{2}}{r^{3}} \tag{24}
\end{equation*}
$$

Plugging ℓ given above and $r=10 G M$ yields

$$
\begin{equation*}
\tilde{E} \approx-0.0429 \tag{25}
\end{equation*}
$$

(c) Since $\ell=r^{2} d \phi / d \tau$, we have

$$
\begin{equation*}
\tau=\frac{r_{c}^{2}}{\ell} \int_{0}^{2 \pi} d \phi=\frac{2 \pi r_{c}^{2}}{\ell}=2 \pi r_{c} \sqrt{\frac{r_{c}}{G M}-3}=20 \pi \sqrt{7} G M \approx 2.46 \times 10^{8} \mathrm{~km} \tag{26}
\end{equation*}
$$

We can divide by the speed of light $c=2.99 \times 10^{5} \mathrm{~km} / \mathrm{s}$ to obtain $\tau \approx 819 \mathrm{~s}$.

