
PHYS 480/581
General Relativity

Homework Assignment 13 Solutions

Question 1 (4 points).

Moore Problem 31.1
Solutions:
We have the trace-reversed gravitational wave perturbation traveling in the z-direction with

Hµν = Aµν cos (kαx
α), (1)

where kα = (−ω, 0, 0, ω) and

Aµν =


a 0 0 a
0 b 0 0
0 0 c 0
a 0 0 a

 . (2)

(a) We are asked to show that all conditions in Moore 31.4 are satisfied.

• kαk
α = 0:

kαk
α = ηµαkµkα = ηttk20 + ηzz(kz)

2 = −(−ω)2 + ω2 = 0. (3)

• kµA
µν = 0: In matrix form, we have

kµA
µν = (−ω, 0, 0, ω)


a 0 0 a
0 b 0 0
0 0 c 0
a 0 0 a


= (−ωa+ ωa, 0, 0,−ωa+ ωa)

= (0, 0, 0, 0). (4)

• Aµν = Aνµ: By inspection, we see that the matrix Aµν is indeed symmetric.

(b) Let’s perform a gauge transformation to put Hµν in transverse-traceless gauge, using ξµ =
Bµ sin (kσx

σ). The matrix Aµν then transforms as

A′µν = Aµν − kµBν − kνBµ + ηµνkαB
α. (5)

Note that kαBα = −ωBt+ωBz = ω(Bz−Bt). To put the above matrix in transverse-traceless
gauge, we first need to set A′tν = 0, that is,

0 = Atν − ktBν − kνBt + ηtνω(Bz −Bt). (6)

Since Atx = Aty = 0 and kx = ky = 0, we must have Bx = By = 0 to get A′tx = A′ty = 0.
Now, taking ν = t in the above equation,

0 = a− ωBt − ωBt − ω(Bz −Bt)

= a− ω(Bt +Bz), (7)
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since kt = ω (the sign difference is because we’ve raised an index using ηtt = −1). Taking
ν = z in Eq. (6), we get

0 = a− ωBz − ωBt

= a− ω(Bt +Bz), (8)

which is the same condition as in Eq. (7) and so this equation doesn’t provide a new constraint
on Bµ. The other condition we need to satisfy is that A′µν is traceless.

0 = ηµνA
′µν = ηµνA

µν − ηµνkµBν − ηµνkνBµ + ηµνη
µνkαB

α

= b+ c− ω(Bz −Bt)− ω(Bz −Bt) + 4ω(Bz −Bt)

= b+ c+ 2ω(Bz −Bt). (9)

Now add twice Eq. (7) to (9),

0 = b+ c− 2ωBt + 2a− 2ωBt

= b+ c+ 2a− 4ωBt

Bt =
2a+ b+ c

4ω
. (10)

Plus this into Eq. (7)

0 = a− ω
(

2a+ b+ c

4ω
+Bz

)
= a−

(
2a+ b+ c+ 4ωBz

4

)
4ωBz = 4a− b− c− 2a

Bz =
2a− b− c

4ω
. (11)

(c) Now, let’s use Eq. (5) above to compute the A′µν . Now, by construction, we have A′tν = 0.
Let’s look at the spatial components.

A′xx = b− kxBx − kxBx + ηxxkαB
α

= b+ ω(Bz −Bt)

= b+ ω

(
2a− b− c

4ω
− 2a+ b+ c

4ω

)
= b− b+ c

2

=
b− c

2
. (12)

A′yy = c− kyBy − kyBy + ηyykαB
α

= c+ ω(Bz −Bt)

= c+ ω

(
2a− b− c

4ω
− 2a+ b+ c

4ω

)
= c− b+ c

2

=
c− b

2
. (13)
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A′zz = a− kzBz − kzBz + ηzzkαB
α

= a− ω
(

2a− b− c
4ω

)
− ω

(
2a− b− c

4ω

)
+ ω

(
2a− b− c

4ω
− 2a+ b+ c

4ω

)
= a−

(
2a− b− c

4

)
−
(

2a+ b+ c

4

)
= a− 4a

4
= 0. (14)

The off-diagonal spatial components are zero since kx = ky = 0 and Bx = By = 0. We thus
have

A′µν =
1

2


0 0 0 0
0 b− c 0 0
0 0 c− b 0
0 0 0 0

 . (15)

(d) From looking at the above A′µν , we have A′tν = A′νt = 0, A′νz = A′zν = 0, and A′xx+A′yy = 0.
Now, the + polarization is

A+ = A′xx =
b− c

2
, (16)

while the × polarization is
A× = A′xy = 0. (17)

(e) We are asked to set all Atν and Azν elements to zero and subtract half the trace of the
remaining matrix. That half trace is equal to (b+ c)/2. Then, the claim is that A′µν is equal
to

A′µν =


0 0 0 0

0 b− b+c
2 0 0

0 0 c− b+c
2 0

0 0 0 0

 =
1

2


0 0 0 0
0 b− c 0 0
0 0 c− b 0
0 0 0 0

 . (18)

which is indeed true.

Question 2 (4 points).

Moore Problem 32.3
Solutions:
We have hTT

µν = Aµν cos (kαx
α), where kα = (ω, 0, 0,−ω) and

Aµν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 (19)

(a) The stress-energy tensor for gravitational waves is given by

TGW
µν =

1

32πG

〈
(∂µh

TT
ρσ )(∂νh

ρσ
TT)
〉
. (20)
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Since hTT
µν is only a function of t and z, then only TGW

tt , TGW
zz , TGW

tz , and TGW
zt are nonzero.

All of these components will involve the contraction AµνAµν = Tr(A2), which is

AµνA
µν = Tr




0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0




0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0




= Tr




0 0 0 0
0 A2

+ +A2
× 0 0

0 0 A2
+ +A2

× 0
0 0 0 0




= 2(A2
+ +A2

×). (21)

Thus, the stress-energy tensor components are

TGW
µν =

1

32πG

〈
(∂µh

TT
ρσ )(∂νh

ρσ
TT)
〉

=
AρσA

ρσ

32πG
kµkν

〈
sin2 (kαx

α)
〉

=
(A2

+ +A2
×)

16πG
kµkν

〈
sin2 (kαx

α)
〉

=
(A2

+ +A2
×)

32πG
kµkν , (22)

since averaging the sin2 term over several wavelengths gives 〈sin2 (kαx
α)〉 = 1/2. We thus get

TGW
tt =

ω2(A2
+ +A2

×)

32πG
= TGW

zz = −TGW
tz = −TGW

zt , (23)

since kα = (ω, 0, 0,−ω). In matrix form,

TGW
µν =

ω2(A2
+ +A2

×)

32πG


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 . (24)

(b) By definition of the stress-energy tensor, the flow of energy in the i spatial direction is T ti

(with the raised indices). Since TGW
tx = TGW

ty = 0, the only nonzero flux of energy is in the z
direction. For this, we have

flux = T tzGW = ηttηzzTGW
tz = −TGW

tz =
ω2(A2

+ +A2
×)

32πG
, (25)

which indeed a flow of energy in the +z direction.

Question 3 (6 points).

Consider two inspiraling black holes with mass 10M�, where M� is the mass of the sun. Assume
the system is located at the centre of our galaxy; let’s call this distance to the black holes rgal.
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Assume that the initial separation is 100 rs, where rs is the Schwarzschild radius. In the weak field
approximation, compute the gravitational wave amplitude h(t) at the LIGO site as a function of
time, making use of the quadrupole radiation formula. Assume that we are seeing the system face
on. Then, using the formula for the radiated power derived in class, compute the gradual decay of
the orbital radius R(t) (using Newtonian physics to relate the energy density radiated to the change
in the orbital radius). The approximations cease to be valid once R(t) approaches rs, so stop the
calculation before that point.

Solutions:
We can consider the two inspiring black holes to be point masses orbiting each other. Let’s take
the orbital plane to be the xy-plane. The positions of the two black holes are then

~ra = (R(t) cos Ωt, R(t) sin Ωt, 0), (26)

~rb = (−R(t) cos Ωt,−R(t) sin Ωt, 0), (27)

where the labels a, b denote the two black holes, Ω is the angular frequency, and R(t) is the orbital
radius. The total mass density of two 10M� black holes is then

ρ(t,x) = 10M�δ(z) (δ(x−R(t) cos Ωt)δ(y −R(t) sin Ωt) + δ(x+R(t) cos Ωt)δ(y +R(t) sin Ωt)) .
(28)

The trace-reversed metric perturbation far away from the inspiring black holes is given by the
quadrupole formula

H ij(t, r) =
2G

rgal
Ïij(t− r), (29)

where
Iij(t) =

∫
(x′ix′j − 1

3
ηijr′2)ρ(t,x′)d3x′, (30)

is the reduced quadrupole moment of the two black holes. The first part of the calculation is to
evaluate this quadrupole moment. Let me first compute the second term in Eq. (30), since this term
will be the same for all diagonal elements (and zero for off-diagonal elements).

−1

3
ηij
∫

(r2)ρ(t,x)d3x = −10M�
3

δij
∫

(x2 + y2 + z2)δ(z) (δ(x−R(t) cos Ωt)δ(y −R(t) sin Ωt)

+δ(x+R(t) cos Ωt)δ(y +R(t) sin Ωt)) dxdydz

= −10M�
3

δij
∫

(x2 + y2) (δ(x−R(t) cos Ωt)δ(y −R(t) sin Ωt)

+δ(x+R(t) cos Ωt)δ(y +R(t) sin Ωt)) dxdy

= −20M�
3

δij
(
R2(t) cos2 Ωt+R2(t) sin2 Ωt

)
= −20R2(t)M�

3
δij . (31)

Now, the first term in Eq. (30)∫
(xixj)ρ(t,x)dxdydz = 10M�

∫
(xixj)δ(z) (δ(x−R(t) cos Ωt)δ(y −R(t) sin Ωt) (32)

+δ(x+R(t) cos Ωt)δ(y +R(t) sin Ωt)) dxdydz.
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Clearly, if either i or j = 3, this is clearly 0 since the δ(z) delta function will always set z = 0. The
other cases are∫

(x2)ρ(t,x)dxdydz = 20R2(t)M� cos2 Ωt = 10R2(t)M� (1 + cos 2Ωt) , (33)

∫
(xy)ρ(t,x)dxdydz = 20M�R

2(t) cos Ωt sin Ωt = 10R2(t)M� sin 2Ωt, (34)∫
(y2)ρ(t,x)dxdydz = 20M�R

2(t) sin2 Ωt = 10R2(t)M� (1− cos 2Ωt) . (35)

Putting everything together, we get

Iij(t) =
10R2(t)M�

3

 (1 + 3 cos 2Ωt) 3 sin 2Ωt 0
3 sin 2Ωt (1− 3 cos 2Ωt) 0

0 0 −2

 . (36)

Now, let’s use some classical mechanics to relate Ω to R and the black hole masses. Basically, we
want to equal the gravitational force that one black hole feels to the “centrifugal ” force

GM2

(2R(t))2
= MΩ2R(t), ⇒ Ω =

(
GM

4R3(t)

)1/2

, (37)

where M = 10M�. Now, let’s use the quadrupole formula to compute the trace-reversed metric
perturbation far away. In doing so, we will assume that the rate of change of the orbital radius R(t)
is much smaller than Ω (we will check later that this is indeed a good approximation). We have

H ij(t, r) =
2G(10M�)R2(tr)(2Ω)2

rgal

 − cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0


=

200G2M2
�

rgalR(tr)

 − cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0

 (38)

where tr ≡ t− r. Now, if the system appears to us face on, we are basically looking at the system
down the z-axis. So, we are detecting gravitational waves traveling down the z-axis, i.e., with a
wave vector pointing in the z-direction. For such waves, the trace-reversed metric perturbation
above is equal to the transverse-traceless perturbation H ij = H ij

TT = hijTT (since kµHµν = 0 here).
Thus, the LIGO detector will see the wave

hijTT(t) =
200G2M2

�
rgalR(tr)

 − cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0

 . (39)

This is a wave with amplitude

A+ = A× =
200G2M2

�
rgalR(tr)

, (40)
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but where the two polarization are 90 degrees out of phase (this lead to a circularly polarized wave).
We can also estimate the initial signal strength since the separation of the black holes is 100rs at
first (i.e. R = 50rs). Since rs = 2GM = 20GM�, we have

A+ = A× =
GM�
5rgal

, (41)

initially. Since rgal ∼ 8 kpc, we have A+ = A× ∼ 10−18, which is a signal that LIGO can easily
detect. Now, let’s turn our attention to the orbital decay caused by the energy taken away by the
gravitational waves. The total power emitted in gravitational waves by the inspiring black holes is

P =
G

5

〈 ...
I jk

...
I jk

〉
. (42)

Using Eq. (36) above, we have

...
I ij(t) = 10R2(t)M�(2Ω)3

 sin 2Ωt − cos 2Ωt 0
− cos 2Ωt − sin 2Ωt 0

0 0 0

 , (43)

where again we have assumed that R(t) changes very slowly. Then,〈 ...
I ij

...
I ij
〉

= 100M2
�R

4(t)(2Ω)6
〈

sin2 2Ωt+ sin2 2Ωt+ cos2 2Ωt+ cos2 2Ωt
〉

= 12800M2
�R

4(t)Ω6

= 2× 105
G3M5

�
R5(t)

, (44)

and the total power emitted is

P = 2× 105
G4M5

�
5R5(t)

. (45)

Using Newtonian physics, the total energy of the inspiring black holes is given by

E =
1

2
MaR

2(t)Ω2 +
1

2
MbR

2(t)Ω2 − GMaMb

2R(t)
, (46)

where Ma = Mb = 10M�. Substituting Ω from above, this reduces to

E = −G(10M�)2

4R(t)
. (47)

The rate of change of the energy is then

dE

dt
=
G(10M�)2

4R2(t)

dR(t)

dt
. (48)

This must be equal to the power emitted in gravitational waves

G(10M�)2

4R2(t)

dR(t)

dt
= −2G4(10M�)5

5R5(t)
⇒ R3(t)

dR(t)

dt
= −8G3(10M�)3

5
. (49)
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Integrating on both sides yields∫ R

50rs

R′3dR′ = −8G3(10M�)3

5

∫ t

0
dt′

R(t)4 − (50rs)
4

4
= −8G3(10M�)3

5
t

R(t) =

(
(50rs)

4 − 32G3(10M�)3

5
t

)1/4

R(t) = (10GM�)3/4
(

109GM� −
32

5
t

)1/4

. (50)

Finally, let’s check that the rate of change of the orbital radius is indeed much slower than the
angular velocity at the beginning of the in-spiral. Basically, we want to show that∣∣∣∣∣ 1

R(t)

dR(t)

dt

∣∣∣∣∣
t∼0

� Ω

2π
. (51)

We have∣∣∣∣∣ 1

R(t)

dR(t)

dt

∣∣∣∣∣
t∼0

=
8G3M3

5R4(0)
=

32π

5

(
GM

R(0)

)5/2 Ω

2π
=

32π

5

(
1

100

)5/2 Ω

2π
' 2× 10−4

Ω

2π
, (52)

and indeed the rate of change of the orbital radius is very small compare to the orbital frequency.


