PHYS 480/581
 General Relativity

Homework Assignment 1 Solutions

Question 1 (3 points).
Moore's Problem 1.2

Solutions:

(a) We are given the relativistic Doppler formula. In the limit that $v / c \ll 1$, we can Taylor expand it as

$$
\begin{equation*}
\frac{\lambda}{\lambda_{0}}=\frac{\sqrt{1-v / c}}{\sqrt{1+v / c}} \approx \frac{1-(v / 2 c)}{1+(v / 2 c)} \approx(1-(v / 2 c))(1-(v / 2 c))=1-v / c+\mathcal{O}\left((v / c)^{2}\right) \tag{1}
\end{equation*}
$$

where v here is the detector's speed relative to the laser at the time of emission. Now, write $\lambda=\lambda_{0}-\Delta \lambda$ (since $\lambda<\lambda_{0}$, i.e. it's a blue shift). We then have

$$
\begin{equation*}
\frac{\lambda}{\lambda_{0}}=\frac{\lambda_{0}-\Delta \lambda}{\lambda_{0}} \approx 1-v / c \rightarrow \frac{\Delta \lambda}{\lambda_{0}} \approx \frac{v}{c} \tag{2}
\end{equation*}
$$

Now, if the distance between the laser and detector is d, then the time it takes for the photon to go from one to the other if $\Delta t=d / c$. The speed gained by the detector relative to the laser at emission is then $v=g \Delta t=g d / c$. We thus get

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{g d}{c^{2}} \tag{3}
\end{equation*}
$$

(b) If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $d=25 \mathrm{~m}$, then we get

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda_{0}}=2.7 \times 10^{-15} \tag{4}
\end{equation*}
$$

(c) The first thing we need is to compute the gravitational acceleration on the surface of the neutron star. This is given by

$$
\begin{equation*}
g_{\mathrm{NS}}=\frac{G M_{\mathrm{NS}}}{R_{\mathrm{NS}}^{2}} \tag{5}
\end{equation*}
$$

where G is Newton's gravitational constant. Putting $M_{\mathrm{NS}}=3 \times 10^{30} \mathrm{~kg}$ and $R_{\mathrm{NS}}=12 \mathrm{~km}$, we find $g_{\mathrm{NS}}=1.39 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$. In this case

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{g_{\mathrm{NS}} d}{c^{2}}=3.9 \times 10^{-4} \tag{6}
\end{equation*}
$$

which is much larger than on Earth.

Question 2 (4 points).
Moore's Problem 1.3

Solutions:

(a) The time it takes for the photon to travel from one side of the laboratory to the other is

$$
\begin{equation*}
\Delta t=d / c . \tag{7}
\end{equation*}
$$

According to the Equivalence Principle, in that time, the photon will "fall" (or rather, the lab would move up by) a distance

$$
\begin{equation*}
h=\frac{1}{2} g \Delta t^{2}=\frac{g}{2}\left(\frac{d}{c}\right)^{2}, \tag{8}
\end{equation*}
$$

using the standard classical mechanics expression. Putting some numbers here with $d=3 \mathrm{~m}$, we get

$$
\begin{equation*}
h=\frac{g}{2}\left(\frac{d}{c}\right)^{2}=4.9 \times 10^{-16} \mathrm{~m} \tag{9}
\end{equation*}
$$

which is about half the size of a proton, a very small deflection indeed. This could also be expressed in terms of a deflection angle, which in the small-angle approximation is given by

$$
\begin{equation*}
\theta \simeq \frac{h}{d}=1.6 \times 10^{-16} \mathrm{rad} \tag{10}
\end{equation*}
$$

(b) From the previous problem, we know that $g_{\mathrm{NS}}=1.39 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$. We thus get

$$
\begin{equation*}
\frac{g_{\mathrm{NS}}}{2}\left(\frac{d}{c}\right)^{2}=6.96 \times 10^{-5} \mathrm{~m} \tag{11}
\end{equation*}
$$

The deflection angle is then $\theta \simeq 2.3 \times 10^{-5} \mathrm{rad}$.

Question 3 (2 points).
Moore's Problem 2.7
Solutions: Assume that in the ground frame, the two lights (A and B) are separated by a distance $\Delta x_{\mathrm{AB}}=x_{\mathrm{B}}-x_{\mathrm{A}}>0$, meaning that light B here is closer to the front of the train, which is moving in the positive x direction. In the ground frame, the two lights blink simultaneously so $\Delta t_{\mathrm{AB}}=t_{\mathrm{B}}-t_{\mathrm{A}}=0$. In the rest frame of the train, these two intervals are

$$
\binom{\Delta t_{\mathrm{AB}}^{\prime}}{\Delta x_{\mathrm{AB}}^{\prime}}=\left(\begin{array}{cc}
\gamma & -\beta \gamma \tag{12}\\
-\beta \gamma & \gamma
\end{array}\right)\binom{0}{\Delta x_{\mathrm{AB}}},
$$

which means that $\Delta t_{\mathrm{AB}}^{\prime}=t_{\mathrm{B}}^{\prime}-t_{\mathrm{A}}^{\prime}=-\beta \gamma \Delta x_{\mathrm{AB}}<0$. This means that $t_{\mathrm{B}}^{\prime}<t_{\mathrm{A}}^{\prime}$, which implies that in the train frame the light closest to the front of the train blinks first.

