
Physics 480/581
General Relativity

Homework Assignment 2 Solutions

Question 1 (2 points).

Particle physicists are so used to setting c = 1 that they measure mass in units of energy. For
instance, they use electron volts (1 eV = 1.6× 10−12 erg = 1.8× 10−33 g), or more commonly, keV,
MeV, and GeV (103 eV, 106 eV, and 109 eV, respectively). The muon has been measured to have
a rest mass of 106 MeV and a rest frame lifetime of 2.19 × 10−6 seconds. Imagine that a muon is
moving in the circular storage ring of a particle accelerator, 1 kilometer in diameter, such that the
muon’s total energy is 1000 GeV. How long would it appear to live from the experimenter’s point
of view? How many radians would it travel around the ring?
Solutions:

The first step is to find the speed of a E = 1000 GeV muon in the lab frame. In relativity, the
speed is given by v = p/E, where p is the (relativistic) three-momentum and E is the energy. Using
E2 = m2 + p2, the speed is

v =

√
E2 −m2

E
= 0.99999999438 ≈ 1, (1)

so the muon is basically propagating at the speed of light. The relativistic γ factor is

γ =
1√

1− v2
=
E

m
, (2)

where we used Eq. (1). Now, intuitively, the lifetime of the muon in the lab frame will be the
rest frame lifetime times the dilation factor γ (this is the right answer). But let’s say you didn’t
remember that. Instead, let’s relate the proper time of the muon to the coordinate time of an
observer in the lab frame. The proper time is of course defined by dτ =

√
−ds2. Since the muon

is going around a circular storage ring, it is useful to use polar coordinates (r, θ) to describe the
spatial part of the line element ds2. With this choice, the muon proper time elapsed within some
coordinate time t is

τ =

∫ √
−ds2 =

∫ √
dt2 − dr2 − r2dθ2 (3)

=

∫ t

0
dt

√
1−

(
dr

dt

)2

− r2
(
dθ

dt

)2

. (4)

Now, the muon is moving around the ring so dr/dt = 0 since r = R = 0.5 km is fixed, and
rdθ/dt = Rdθ/dt = v, the speed computed above. Thus, the muon proper time is

τ =

∫ t

0
dt
√

1− v2 =
(√

1− v2
)
t, (5)

and thus
t =

τ√
1− v2

= γτ, (6)
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as per our intuition. Note that this answer is independent of the fact that the muon is going around
a ring (that is, we would have gotten the same answer is the muon was going in a straight line with
velocity v). Of course, the proper time here is the time measured by a clock traveling with the
muon (i.e in its rest frame). Setting this proper time equal to the muon lifetime τµ, the observer in
the lab frame will observe this lifetime to be

t = γτµ =
E

m
τµ ≈ 0.0207 s. (7)

In this time interval, the muon travels a distance

L = vt =

√
E2 −m2

m
τµ = R∆θ, (8)

where ∆θ is the number of radians that the muon travel around the ring. We then get

∆θ =

√
E2 −m2

mR
τµ ≈

Eτµ
mR

= 1.24× 104rad. (9)

This means that the muon will go around the ring nearly two thousand times before decaying.

Question 2 (4 points).

Moore Problem 3.1
Solutions:

(a) We simply have

ux =
dx

dτ
= sinh (gτ). (10)

(b)
u · u = −(ut)2 + (ux)2 = −1 → ut =

√
1 + (ux)2 = cosh (gτ) (11)

(c) The speed of the object is

v =
dx

dt
=
dx

dτ

dτ

dt
=
ux

ut
=

sinh (gτ)

cosh (gτ)
= tanh (gτ), (12)

which is always than 1 since | tanhx| < 1 for all x.

(d) Since ut = dt/dτ = cosh (gτ), we have that

t =

∫ τ

0
cosh (gτ ′)dτ ′ =

1

g
sinh (gτ). (13)

Thus, gt = sinh (gτ).

(e) Putting everything together, we have

ux = gt, ut =
√

1 + (gt)2, v =
gt√

1 + (gt)2
. (14)
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Question 3 (4 points).

The principle of relativity states that the laws of physics are the same in every inertial reference
frames. Quantitatively, one thing we mean by this is that all inertial observers will agree on the norm
of four-vectors. The Lorentz transformations are actually defined as the set of linear transformations
between inertial frames that leave the norm of four-vectors invariant.

Suppose we have a four-vector p in some inertial frame S. A different observer in an inertial frame
S′ will see the four-vector p′ = Λp, where Λ is a Lorentz transformation matrix.

(a) Using the fact that p2 = p′2, show that the Lorentz transformation matrices Λ obey the
following identity

η = ΛTηΛ, (15)

where η is the Minkowski metric, and “T” denotes matrix transposition. If you prefer, you
can do this computation in component notation, in which case the result is

ηρσ = ΛµρηµνΛνσ. (16)

Matrices Λ satisfying Eq. (15) form a group under matrix multiplication called O(1, 3) (where
O stands for orthogonal since Eq. (15) is essentially the orthogonality condition for matrices
M , i.e. MTM = MMT = 1, but with respect to the Minkowski metric).

Solutions: Let us first use matrix notation. The first thing to realize is that p2 = p·p = pTηp,
by the definition of the inner product. We then have

p2 = p′2

pTηp = p′Tηp′

pTηp = (Λp)TηΛp

pTηp = pTΛTηΛp. (17)

Since this is true for an arbitrary vector p, we then have

η = ΛTηΛ. (18)

If you prefer to do it in component notation, we have

p2 = p′2

ηρσp
ρpσ = ηµνp

′µp′ν

ηρσp
ρpσ = ηµν(Λµρp

ρ)(Λνσp
σ)

ηρσp
ρpσ = ΛµρηµνΛνσp

ρpσ

(ηρσ − ΛµρηµνΛνσ)pρpσ = 0, (19)

which for arbitrary vector p implies

ηρσ = ΛµρηµνΛνσ. (20)
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Note that if we want to convert from component to matrix notation, we need to place summed-
over indices next to each other. This requires changing the order of µ and ρ in the first Λ
matrix, which corresponds to transposing the matrix, i.e.

ηρσ = (ΛT) µ
ρ ηµνΛνσ, (21)

which in matrix notation is
η = ΛTηΛ. (22)

(b) Use the properties of the matrix determinant to show that

det Λ = ±1. (23)

Here, transformations with det Λ = 1 correspond to spacetime rotations (i.e. regular 3D
rotation and Lorentz boosts), while those with det Λ = −1 correspond to reflections (or parity
transformations), which essentially turn a right-handed reference frame into a left-handed one.
In general, we prefer our Lorentz transformations to preserve the handedness of our reference
frames and we always work with det Λ = 1. With this choice and Eq. (15) above, the matrices
Λ form a group under matrix multiplication called SO(1, 3) (where S stands for “special”).
Solutions:

We simply use the fact that the determinant of a matrix product is the product of the deter-
minant, that is,

detη = det (ΛTηΛ)

detη = (det ΛT)(detη)(det Λ)

1 = (det ΛT)(det Λ)

1 = (det Λ)2, (24)

where we have use the fact that detη = −1 6= 0, and the fact that det ΛT = det Λ. The above
immediately implies that

det Λ = ±1. (25)

since Λ are real matrices. As mentioned above, we only keep Λ matrices with det Λ = 1 as
part of the Lorentz group.

(c) Even with η = ΛTηΛ and det Λ = 1, this is not exactly the kind of Lorentz transformations
we want in physics. In particular, we would like all our Lorentz transformations to be smoothly
connected to the identity, that is, for some ε� 1,

Λ ' 1 + εX, (26)

where X is a matrix (called a group generator) that has the required properties to ensure
that η = ΛTηΛ and det Λ = 1. Note that Eq. (26) is a very reasonable request: if two
inertial frames are barely moving with respect to each other, then these two frames are nearly
the same and the Lorentz transformation between them should be nearly the identity. Now,
consider the matrix

Λtp =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (27)
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which is a combination of time reversal and parity transformations. Show that this matrix
indeed satisfies η = ΛTηΛ and det Λ = 1, but then argue that this matrix is not smoothly
connected to the identity matrix. Clearly, we want to exclude this possibility from our space
of Lorentz transformations.

Using Eq. (16) above, show that the component Λ0
0 of matrices satisfying η = ΛTηΛ can

have values falling in two distinct intervals on the real axis. Identify which choice of interval
effectively eliminates Λtp from our set of Lorentz transformations, and then summarize the
three key properties that matrices Λ must satisfy to be physical Lorentz transformations.
Such matrices are said to form the proper orthochronous Lorentz group.
Solutions:

The important thing to notice is that Λtp = −1, from which we immediately get

ΛT
tpηΛtp = (−1)Tη(−1)

= 1η1

= η, (28)

so indeed Λtp satisfies the orthogonality condition. Similarly

det Λtp = det (−1)

= (−1)4 det 1

= 1, (29)

where we have used the property of the determinant that det cA = cn det A, where n is the
size of the square matrix A and c is a real number. Thus, this condition is also satisfied. Now,
since Λtp = −1, it is impossible to find an ε� 1 such that

Λtp = −1 ' 1 + εX (impossible if ε� 1), (30)

where it is understood that every entry in the product εX� 1. Essentially, minus the identity
matrix is not infinitesimally connected to the identity. Now let’s look at the condition on
the 0 − 0 entry in the Λ matrices. Using component notation and the Einstein summation
convention, we have

η00 = Λµ0ηµνΛν0

−1 = Λ0
0η00Λ

0
0 + Λi0ηijΛ

j
0

−1 = −(Λ0
0)

2 + Λi0δijΛ
j
0

−1 = −(Λ0
0)

2 +

3∑
i=1

(Λi0)
2

(Λ0
0)

2 = 1 +

3∑
i=1

(Λi0)
2. (31)

Since Λ are real matrices, note that we have

3∑
i=1

(Λi0)
2 ≥ 0. (32)
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Thus, we have two distinct possibilities for Λ0
0,

Λ0
0 = ±

√√√√1 +
3∑
i=1

(Λi0)
2, (33)

which implies that we either have Λ0
0 ≥ 1 or Λ0

0 ≤ −1. Thus, Λ0
0 can indeed lie within

two distinct intervals on the real axis. If we want to eliminate a transformation like Λtp from
our set of Lorentz transformations, we can then restrict our transformations to have Λ0

0 ≥ 1
always.

In summary, the Lorentz transformations Λ that we consider in physics have the following
properties

{η = ΛTηΛ, det Λ = 1,Λ0
0 ≥ 1}. (34)


