PHYS 480/581
 General Relativity

Homework Assignment 3
Due date: Wednesday $02 / 07 / 20245 \mathrm{pm}$, submitted electronically on UNM Canvas

Question 1 (7 points).
Imagine we have a tensor (matrix) $X^{\mu \nu}$ and a vector V^{μ}, with components

$$
X^{\mu \nu}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \tag{1}\\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), \quad V^{\mu}=(-1,2,0,-2)
$$

Assuming that these two objects live in flat spacetime with a Minkowski metric $\eta_{\mu \nu}$, find the components of:
(a) $X^{\mu}{ }_{\nu}$
(b) $X_{\mu}{ }^{\nu}$
(c) $X^{(\mu \nu)} \equiv \frac{1}{2}\left(X^{\mu \nu}+X^{\nu \mu}\right)$
(d) $X_{[\mu \nu]} \equiv \frac{1}{2}\left(X_{\mu \nu}-X_{\nu \mu}\right)$
(e) $X^{\lambda}{ }_{\lambda}$
(f) $V^{\mu} V_{\mu}$
(g) $V_{\mu} X^{\mu \nu}$

Question 2 (2 points).
The electromagnetic Lagrangian density is $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$. With the help of Eq. (4.14) in Moore, write down \mathcal{L} in terms of the \vec{E} and \vec{B} field components.

Question 3 (5 points).
Moore Problem 5.5

