PHYS 480/581 General Relativity

Homework Assignment 3

Due date: Wednesday 02/07/2024 5pm, submitted electronically on UNM Canvas

Question 1 (7 points).

Imagine we have a tensor (matrix) $X^{\mu\nu}$ and a vector V^{μ} , with components

$$X^{\mu\nu} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix}, \qquad V^{\mu} = (-1, 2, 0, -2).$$
(1)

Assuming that these two objects live in flat spacetime with a Minkowski metric $\eta_{\mu\nu}$, find the components of:

- (a) $X^{\mu}_{\ \nu}$
- (b) $X_{\mu}^{\ \nu}$
- (c) $X^{(\mu\nu)} \equiv \frac{1}{2} \left(X^{\mu\nu} + X^{\nu\mu} \right)$
- (d) $X_{[\mu\nu]} \equiv \frac{1}{2} (X_{\mu\nu} X_{\nu\mu})$
- (e) X^{λ}_{λ}
- (f) $V^{\mu}V_{\mu}$
- (g) $V_{\mu}X^{\mu\nu}$

Question 2 (2 points).

The electromagnetic Lagrangian density is $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$. With the help of Eq. (4.14) in Moore, write down \mathcal{L} in terms of the \vec{E} and \vec{B} field components.

Question 3 (5 points).

Moore Problem 5.5